Microcapsules of salicylic acid (SA) with chitosan were prepared by spray drying method. Various analytical methods were used to characterize the nature of microcapsules. Fourier-transform infrared spectroscopy (F...Microcapsules of salicylic acid (SA) with chitosan were prepared by spray drying method. Various analytical methods were used to characterize the nature of microcapsules. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of intermolecular interactions between chitosan and SA. Particle size analysis showed that the average size ofmicrocapsules ranged from 2 to 20 pro, Scanning electron microscopy (SEM) studies indicated that the microspheres were spherical and had a relatively smooth surface. Microbiological assay of antibacterial activity for SA and its microcapsules was measured using different bacterial strains. It was found that the antibacterial activity of SA was improved after the formation of microcapsules. The in vitro release profile showed that the microcapsules could control SA release from I h to 4 h. Kinetic studies revealed that the release pattern follows Korsmeyer-Peppas mechanism. Enhanced antibacterial activity of the SA micro- capsules was attributed to the synergistic effects of intermolecular hydrogen-bonding interactions N-H...O and O-H...O=C between SA and chitosan. It was also confirmed by quantum chemical calculation.展开更多
Porous materials play an important role in chemical catalysis,separation and other industrial applications.High-efficiency preparation of porous materials has become an active research area.Conventional synthesis of p...Porous materials play an important role in chemical catalysis,separation and other industrial applications.High-efficiency preparation of porous materials has become an active research area.Conventional synthesis of porous materials has been dominated by one-pot solution processing conditions carried out by bulk mixing under conventional electric heating via hydrothermal,solvothermal or ionothermal reactions where high temperatures and pressures are the standard.Continuous flow synthesis has many key advantages in terms of efficient mass and heat transfer,precise control of residence times,improved opportunities for automation and feedback control of synthesis,scaling-up reactions and improved safety parameters compared to above mentioned conventional batch scale synthetic methods.In this review,continuous flow synthesis of various crystalline porous materials such as metal-organic frameworks(MOFs),covalent-organic frameworks(COFs),porous organic cages and zeolites is discussed.Combination of microfluidic methods with other techniques are also shown including various heating ways and various methods of substrate adding.展开更多
基金Supported by the National Natural Science Foundation of China(21376279,21425627)the Science and Technology Major Program of Guangdong Province(2012A080103005)+2 种基金the Fundamental Research Funds for the Central Universities(14lgpy28)Guangzhou Science and Technology Plan Projects(2014J4100125)the Dayawan Science and Technology Plan Projects(2013A01013)
文摘Microcapsules of salicylic acid (SA) with chitosan were prepared by spray drying method. Various analytical methods were used to characterize the nature of microcapsules. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of intermolecular interactions between chitosan and SA. Particle size analysis showed that the average size ofmicrocapsules ranged from 2 to 20 pro, Scanning electron microscopy (SEM) studies indicated that the microspheres were spherical and had a relatively smooth surface. Microbiological assay of antibacterial activity for SA and its microcapsules was measured using different bacterial strains. It was found that the antibacterial activity of SA was improved after the formation of microcapsules. The in vitro release profile showed that the microcapsules could control SA release from I h to 4 h. Kinetic studies revealed that the release pattern follows Korsmeyer-Peppas mechanism. Enhanced antibacterial activity of the SA micro- capsules was attributed to the synergistic effects of intermolecular hydrogen-bonding interactions N-H...O and O-H...O=C between SA and chitosan. It was also confirmed by quantum chemical calculation.
基金the National Natural Science Foundation of China(NSFC,No.51573216)the NSF of Guangdong Province for financial support。
文摘Porous materials play an important role in chemical catalysis,separation and other industrial applications.High-efficiency preparation of porous materials has become an active research area.Conventional synthesis of porous materials has been dominated by one-pot solution processing conditions carried out by bulk mixing under conventional electric heating via hydrothermal,solvothermal or ionothermal reactions where high temperatures and pressures are the standard.Continuous flow synthesis has many key advantages in terms of efficient mass and heat transfer,precise control of residence times,improved opportunities for automation and feedback control of synthesis,scaling-up reactions and improved safety parameters compared to above mentioned conventional batch scale synthetic methods.In this review,continuous flow synthesis of various crystalline porous materials such as metal-organic frameworks(MOFs),covalent-organic frameworks(COFs),porous organic cages and zeolites is discussed.Combination of microfluidic methods with other techniques are also shown including various heating ways and various methods of substrate adding.