A new titanium alloy Ti12.5Zr2.5Nb2.5Ta(TZNT) for surgical implant application was synthesized and fully annealed at 700℃for 45 min.The microstructure and the mechanical properties such as tensile properties and fa...A new titanium alloy Ti12.5Zr2.5Nb2.5Ta(TZNT) for surgical implant application was synthesized and fully annealed at 700℃for 45 min.The microstructure and the mechanical properties such as tensile properties and fatigue properties were investigated.The results show that TZNT mainly consists of a lot of lamellaα-phase clusters with different orientations distributed in the originalβ-phase grain boundaries and a small amount ofβphases between the lamella a phases.The alloy exhibits better ductility,lower modulus of elasticity,and lower admission strain in comparison with Ti6A14V and Ti6A17Nb,indicating that it has better biomechanical compatibility with human bones.The fatigue limit of TZNT is 333 MPa,at which the specimen has not failed at 10^7 cycles.A large number of striations present in the stable fatigue crack propagation area,and many dimples in the fast fatigue crack propagation area are observed,indicating the ductile fracture of the new alloy.展开更多
基金supported by the Shanghai Science and Technology Development Founds(No.08QA14035)the Key Project of Shanghai Science and Technology Commission(No.08520513400).
文摘A new titanium alloy Ti12.5Zr2.5Nb2.5Ta(TZNT) for surgical implant application was synthesized and fully annealed at 700℃for 45 min.The microstructure and the mechanical properties such as tensile properties and fatigue properties were investigated.The results show that TZNT mainly consists of a lot of lamellaα-phase clusters with different orientations distributed in the originalβ-phase grain boundaries and a small amount ofβphases between the lamella a phases.The alloy exhibits better ductility,lower modulus of elasticity,and lower admission strain in comparison with Ti6A14V and Ti6A17Nb,indicating that it has better biomechanical compatibility with human bones.The fatigue limit of TZNT is 333 MPa,at which the specimen has not failed at 10^7 cycles.A large number of striations present in the stable fatigue crack propagation area,and many dimples in the fast fatigue crack propagation area are observed,indicating the ductile fracture of the new alloy.