期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Catch bond-inspired hydrogels with repeatable and loading rate-sensitive specific adhesion 被引量:1
1
作者 zuoying yuan Xiaocen Duan +8 位作者 Xing Su Zhuoling Tian Anqi Jiang Zhuo Wan Hao Wang Pengfei Wei Bo Zhao Xiaozhi Liu Jianyong Huang 《Bioactive Materials》 SCIE CSCD 2023年第3期566-575,共10页
Biological receptor-ligand adhesion governed by mammalian cells involves a series of mechanochemical pro-cesses that can realize reversible,loading rate-dependent specific interfacial bonding,and even exhibit a counte... Biological receptor-ligand adhesion governed by mammalian cells involves a series of mechanochemical pro-cesses that can realize reversible,loading rate-dependent specific interfacial bonding,and even exhibit a counterintuitive behavior called catch bonds that tend to have much longer lifetimes when larger pulling forces are applied.Inspired by these catch bonds,we designed a hydrogen bonding-meditated hydrogel made from acrylic acid-N-acryloyl glycinamide(AA-NAGA)copolymers and tannic acids(TA),which formed repeatable specific adhesion to polar surfaces in an ultra-fast and robust way,but hardly adhered to nonpolar materials.It demonstrated up to five-fold increase in shear adhesive strength and interfacial adhesive toughness with external loading rates varying from 5 to 500 mm min^(-1).With a mechanochemical coupling model based on Monte Carlo simulations,we quantitatively revealed the nonlinear dependence of rate-sensitive interfacial adhesion on external loading,which was in good agreement with the experimental data.Likewise,the developed hydrogels were biocompatible,possessed antioxidant and antibacterial properties and promoted wound healing.This work not only reports a stimuli-responsive hydrogel adhesive suitable for multiple biomedical applications,but also offers an innovative strategy for bionic designs of smart hydrogels with loading rate-sensitive specific adhesion for various emerging areas including flexible electronics and soft robotics. 展开更多
关键词 Adhesive hydrogel Specific adhesion Receptor-ligand interaction Mechanochemical coupling model
原文传递
Bioinspired porous microspheres for sustained hypoxic exosomes release and vascularized bone regeneration 被引量:4
2
作者 Yike Gao zuoying yuan +8 位作者 Xiaojing yuan Zhuo Wan Yingjie Yu Qi Zhan Yuming Zhao Jianmin Han Jianyong Huang Chunyang Xiong Qing Cai 《Bioactive Materials》 SCIE 2022年第8期377-388,共12页
Exosomes derived from mesenchymal stem cells(MSCs)have demonstrated regenerative potential for cell-free bone tissue engineering,nevertheless,certain challenges,including the confined therapeutic potency of exosomes a... Exosomes derived from mesenchymal stem cells(MSCs)have demonstrated regenerative potential for cell-free bone tissue engineering,nevertheless,certain challenges,including the confined therapeutic potency of exosomes and ineffective delivery method,are still persisted.Here,we confirmed that hypoxic precondition could induce enhanced secretion of exosomes from stem cells from human exfoliated deciduous teeth(SHEDs)via comprehensive proteomics analysis,and the corresponding hypoxic exosomes(H-Exo)exhibited superior potential in promoting cellular angiogenesis and osteogenesis via the significant up-regulation in focal adhesion,VEGF signaling pathway,and thyroid hormone synthesis.Then,we developed a platform technology enabling the effective delivery of hypoxic exosomes with sustained release kinetics to irregular-shaped bone defects via injection.This platform is based on a simple adsorbing technique,where exosomes are adsorbed onto the surface of injectable porous poly(lactide-co-glycolide)(PLGA)microspheres with bioinspired polydopamine(PDA)coating(PMS-PDA microspheres).The PMS-PDA microspheres could effectively adsorb exosomes,show sustained release of H-Exo for 21 days with high bioactivity,and induce vascularized bone regeneration in 5-mm rat calvarial defect.These findings indicate that the hypoxic precondition and PMS-PDA porous microsphere-based exosome delivery are efficient in inducing tissue regeneration,hence facilitating the clinical translation of exosome-based therapy. 展开更多
关键词 Hypoxic exosomes Stem cells from human exfoliated deciduous teeth Porous microsphere Sustained release Vascularized bone regeneration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部