期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Nucleation and growth control for iron-and phosphorus-rich phases from a modified steelmaking waste slag
1
作者 Juncheng li Guoxuan li +7 位作者 Feng Qiu Rong Wang Jinshan liang Yi Zhong Dong Guan Jingwei li Seetharaman Sridhar zushu li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期378-387,共10页
Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable... Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable development in the steel industry.We had pre-viously found the possibility of recovering Fe and P resources,i.e.,magnetite(Fe_(3)O_(4)) and calcium phosphate(Ca_(10)P_(6)O_(25)),contained in steel-making slags by adjusting oxygen partial pressure and adding modifier B_(2)O_(3).As a fundamental study for efficiently recovering Fe and P from steelmaking slag,in this study,the crystallization behavior of the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt has been observed in situ,using a confocal scanning laser microscope(CLSM).The kinetics of nucleation and growth of Fe-and P-rich phases have been calculated using a classical crys-tallization kinetic theory.During cooling,a Fe_(3)O_(4) phase with faceted morphology was observed as the 1st precipitated phase in the isothermal interval of 1300-1150℃,while Ca_(10)P_(6)O_(25),with rod-shaped morphology,was found to be the 2nd phase to precipitate in the interval of 1150-1000℃.The crystallization abilities of Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases in the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt were quantified with the in-dex of(T_(U)−T_(I))/T_(I)(where T_(I) represents the peak temperature of the nucleation rate and TU stands for that of growth rate),and the crystalliza-tion ability of Fe_(3)O_(4) was found to be larger than that of Ca_(10)P_(6)O_(25) phase.The range of crystallization temperature for Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases was optimized subsequently.The Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases are the potential sources for ferrous feedstock and phosphate fertilizer,respectively. 展开更多
关键词 steelmaking slag MAGNETITE calcium phosphate NUCLEATION GROWTH KINETICS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部