Phosphorus doped silicon-carbon composite particles were synthesized through a DC arc plasma torch.Silane(SiH4) and methane(CH4) were introduced into the reaction chamber as the precursor of silicon and carbon,respect...Phosphorus doped silicon-carbon composite particles were synthesized through a DC arc plasma torch.Silane(SiH4) and methane(CH4) were introduced into the reaction chamber as the precursor of silicon and carbon,respectively.Phosphine(PH3) was used as a phosphorus dopant gas.Characterization of synthesized particles were carried out by scanning electron microscopy(SEM),X-ray diffractometry(XRD),X-ray photoelectron spectroscopy(XPS) and bulk resistivity measurement.Electrochemical properties were investigated by cyclic test and electrochemical voltage spectroscopy(EVS).In the experimental range,phosphorus doped silicon-carbon composite electrode exhibits enhanced cycle performance than intrinsic silicon and phosphorus doped silicon.It can be explained that incorporation of carbon into silicon acts as a buffer matrix and phosphorus doping plays an important role to enhance the conductivity of the electrode,which leads to the improvement of the cycle performance of the cell.展开更多
基金supported by a grant(code #05K1501-01920) from ‘Center for Nanostructured Materials Technology’ under ‘21st Century Frontier R&D Programs’ of the Ministry of Science and Technology,Korea
文摘Phosphorus doped silicon-carbon composite particles were synthesized through a DC arc plasma torch.Silane(SiH4) and methane(CH4) were introduced into the reaction chamber as the precursor of silicon and carbon,respectively.Phosphine(PH3) was used as a phosphorus dopant gas.Characterization of synthesized particles were carried out by scanning electron microscopy(SEM),X-ray diffractometry(XRD),X-ray photoelectron spectroscopy(XPS) and bulk resistivity measurement.Electrochemical properties were investigated by cyclic test and electrochemical voltage spectroscopy(EVS).In the experimental range,phosphorus doped silicon-carbon composite electrode exhibits enhanced cycle performance than intrinsic silicon and phosphorus doped silicon.It can be explained that incorporation of carbon into silicon acts as a buffer matrix and phosphorus doping plays an important role to enhance the conductivity of the electrode,which leads to the improvement of the cycle performance of the cell.