考察了平面近三角剖分图的最大亏格与独立边集之间的关系.设G*是平面近三角剖分图G的一个平面嵌入的几何对偶,如果G*有[1/2φ]个独立边集,那么图G的最大亏格γM(G)≥[1/2β(G)]-11,这里φ和β(G)分别表示图G在平面上嵌入的面数与G的Be...考察了平面近三角剖分图的最大亏格与独立边集之间的关系.设G*是平面近三角剖分图G的一个平面嵌入的几何对偶,如果G*有[1/2φ]个独立边集,那么图G的最大亏格γM(G)≥[1/2β(G)]-11,这里φ和β(G)分别表示图G在平面上嵌入的面数与G的Betti数.特别地,如果φ=0 mod 2,即G有1-因子,则G是上可嵌入的.作为应用.证明了几个已知的结果.展开更多
In this paper we prove that the generalized permutation graph G(n, k) is upper embeddable if it has at most two odd subcycles, and that the maximum genus of G(n, k) is more than 「β(G(n,k))/3」 in most cases.
In this paper, we show that some edges-deleted subgraphs of complete graph are determined by their spectrum with respect to the adjacency matrix as well as the Laplacian matrix.
文摘考察了平面近三角剖分图的最大亏格与独立边集之间的关系.设G*是平面近三角剖分图G的一个平面嵌入的几何对偶,如果G*有[1/2φ]个独立边集,那么图G的最大亏格γM(G)≥[1/2β(G)]-11,这里φ和β(G)分别表示图G在平面上嵌入的面数与G的Betti数.特别地,如果φ=0 mod 2,即G有1-因子,则G是上可嵌入的.作为应用.证明了几个已知的结果.
基金The NSF (10671073) of Chinathe Scientific Fund (03080045) of the Gathered Talents by Nantong UniversityNSF (07KJB110090) of Jiangsu University.
文摘In this paper we prove that the generalized permutation graph G(n, k) is upper embeddable if it has at most two odd subcycles, and that the maximum genus of G(n, k) is more than 「β(G(n,k))/3」 in most cases.
基金Supported by the National Natural Science Foundation of China (Grant No10861009)the State Ethnic Affairs Commission Foundation of China (Grant No09QH02)
文摘In this paper, we show that some edges-deleted subgraphs of complete graph are determined by their spectrum with respect to the adjacency matrix as well as the Laplacian matrix.