利用微波加热法,快速制备了负载在泡沫镍基底上的Fe-Ni-Mo/NF复合材料试样.试样的扫描电镜测试、X射线光电子能谱图和X射线衍射谱图分析结果表明,制备的试样均匀分布,Fe-Ni-Mo/NF具有较高的无定型化程度.析氧催化性能测试表明,Fe-Ni-Mo...利用微波加热法,快速制备了负载在泡沫镍基底上的Fe-Ni-Mo/NF复合材料试样.试样的扫描电镜测试、X射线光电子能谱图和X射线衍射谱图分析结果表明,制备的试样均匀分布,Fe-Ni-Mo/NF具有较高的无定型化程度.析氧催化性能测试表明,Fe-Ni-Mo/NF作为催化电极仅需258 m V的过电位便可以达到100 m A/cm^(2)的电流密度,并且展现出了优异的催化稳定性.Fe-Ni-Mo 3金属复合可以有效调节复合氧化物的电子结构和本征活性.实验结果显示,高的无定型化程度和泡沫镍基底有利于电化学活性面积的提高和催化活性位点的充分暴露,从而展现出优异的析氧催化活性和稳定性.实验证实,超快速制备方法可以有效避免有害有机溶剂的使用并显著降低反应时间,且成本较低,此为快速制备其他高效的催化电极提供了重要的参考.展开更多
文摘利用微波加热法,快速制备了负载在泡沫镍基底上的Fe-Ni-Mo/NF复合材料试样.试样的扫描电镜测试、X射线光电子能谱图和X射线衍射谱图分析结果表明,制备的试样均匀分布,Fe-Ni-Mo/NF具有较高的无定型化程度.析氧催化性能测试表明,Fe-Ni-Mo/NF作为催化电极仅需258 m V的过电位便可以达到100 m A/cm^(2)的电流密度,并且展现出了优异的催化稳定性.Fe-Ni-Mo 3金属复合可以有效调节复合氧化物的电子结构和本征活性.实验结果显示,高的无定型化程度和泡沫镍基底有利于电化学活性面积的提高和催化活性位点的充分暴露,从而展现出优异的析氧催化活性和稳定性.实验证实,超快速制备方法可以有效避免有害有机溶剂的使用并显著降低反应时间,且成本较低,此为快速制备其他高效的催化电极提供了重要的参考.