The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a di...The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.展开更多
The 2.5 m wide-field and high-resolution solar telescope(WeHoST)is currently under developing for solar observations.WeHoST aims to achieve high-resolution observations over a super-wide field of view(FOV)of5′×5...The 2.5 m wide-field and high-resolution solar telescope(WeHoST)is currently under developing for solar observations.WeHoST aims to achieve high-resolution observations over a super-wide field of view(FOV)of5′×5′,and a desired resolution of 0.3″.To meet the scientific requirements of WeHoST,the ground-layer adaptive optics(GLAO)with a specially designed wave front sensing system is as the primary consideration.We introduce the GLAO configuration,particularly the wave front sensing scheme.Utilizing analytic method,we simulate the performance of both classical AO and GLAO systems,optimize the wave front sensing system,and evaluate GLAO performance in terms of PSF uniformity and correction improvement across whole FOV.The results indicate that,the classical AO will achieve diffraction-limited resolution;the suggested GLAO configuration will uniformly improve the seeing across the full 5′×5′FOV,reducing the FWHM across the axis FOV to less than0.3″(λ≥705 nm,r0≥11 cm),which is more than two times improvement.The specially designed wave front sensor schedule offers new potential for WeHoST’s GLAO,particularly the multi-FOV GLAO and the flexibility to select the detected area.These capabilities will significantly enhance the scientific output of the telescope.展开更多
Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(...Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.展开更多
基金This work is supported by“the Fundamental Research Funds for the Central Universities”,111 project No.B20019Shanghai Natural Science Foundation,grant No.19ZR1466800.
文摘The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.
基金supported by the National Natural Science Foundation of China(12103057,12127901)the Frontier Research Fund of the Institute of Optics and Electronics,Chinese Academy of Sciences(C21K002)+1 种基金the Youth Innovation Promotion Association,Chinese Academy of Sciences(2021378)the National Natural Science Foundation of China(U2031148)。
文摘The 2.5 m wide-field and high-resolution solar telescope(WeHoST)is currently under developing for solar observations.WeHoST aims to achieve high-resolution observations over a super-wide field of view(FOV)of5′×5′,and a desired resolution of 0.3″.To meet the scientific requirements of WeHoST,the ground-layer adaptive optics(GLAO)with a specially designed wave front sensing system is as the primary consideration.We introduce the GLAO configuration,particularly the wave front sensing scheme.Utilizing analytic method,we simulate the performance of both classical AO and GLAO systems,optimize the wave front sensing system,and evaluate GLAO performance in terms of PSF uniformity and correction improvement across whole FOV.The results indicate that,the classical AO will achieve diffraction-limited resolution;the suggested GLAO configuration will uniformly improve the seeing across the full 5′×5′FOV,reducing the FWHM across the axis FOV to less than0.3″(λ≥705 nm,r0≥11 cm),which is more than two times improvement.The specially designed wave front sensor schedule offers new potential for WeHoST’s GLAO,particularly the multi-FOV GLAO and the flexibility to select the detected area.These capabilities will significantly enhance the scientific output of the telescope.
基金funded by the National Natural Science Foundation of China(11727805,12103057)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021378).
文摘Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.