基于第六次耦合模式比较计划(CMIP6)的模式模拟数据和欧洲宇航局GlobSnow卫星遥感雪水当量(Snow Water Equivalent,SWE)资料,评估了CMIP6耦合模式对1981~2014年欧亚大陆冬季SWE的模拟能力,并应用多模式集合平均结果预估了21世纪欧亚大陆...基于第六次耦合模式比较计划(CMIP6)的模式模拟数据和欧洲宇航局GlobSnow卫星遥感雪水当量(Snow Water Equivalent,SWE)资料,评估了CMIP6耦合模式对1981~2014年欧亚大陆冬季SWE的模拟能力,并应用多模式集合平均结果预估了21世纪欧亚大陆SWE的变化情况。结果表明,CMIP6耦合模式对冬季欧亚大陆中高纬度SWE空间分布具有较好的再现能力,能模拟出欧亚大陆中高纬度SWE的主要分布特征;耦合模式对SWE变化趋势及经验正交函数主要模态特征的模拟能力存在较大差异,但多模式集合能提高模式对SWE变化趋势和主要时空变化特征的模拟能力;此外,多模式集合结果对欧亚大陆冬季SWE与降水、气温的关系也有较好的再现能力。预估结果表明,21世纪欧亚大陆东北大部分地区的SWE均要高于基准期(1995~2014年),而90°E以西的欧洲大陆SWE基本上呈现减少的特征;21世纪早期,4种不同排放情景下积雪变化的差异不大,但21世纪后期积雪变化的幅度差异较大,而且排放越高积雪变化的幅度越大,模式不确定性也越大;进一步的分析表明,欧亚大陆冬季未来积雪变化特征的空间分布与全球变化背景下局地气温、降水的变化密切相关,高温高湿的条件有利于欧亚大陆东北部积雪的增多。展开更多
重构GRAPES(Global/Regional Assimilation and Prediction System)全球、区域一体化变分同化系统中的极小化控制变量,提升中、小尺度同化分析能力,为中国气象局业务区域数值预报系统CMA-MESO提供千米尺度适用的同化方案。新方案用纬向...重构GRAPES(Global/Regional Assimilation and Prediction System)全球、区域一体化变分同化系统中的极小化控制变量,提升中、小尺度同化分析能力,为中国气象局业务区域数值预报系统CMA-MESO提供千米尺度适用的同化方案。新方案用纬向风速(u)和经向风速(v)替代原有流函数和势函数作为新的风场控制变量,采用温度和地面气压(T,ps)替代原有非平衡无量纲气压作为新的质量场控制变量,同时不再考虑准地转平衡约束,而是采用连续方程弱约束保证分析平衡。背景误差参数统计和数值试验结果表明,采用重构后的极小化控制变量,观测信息传播更加局地,分析结构更加合理,避免了原方案在中、小尺度应用时存在的虚假相关问题。连续方程弱约束的引入,限制了同化分析中辐合、辐散的不合理增长,帮助新方案在分析更加局地的同时保证分析平衡。为期1个月的连续同化循环和预报试验结果表明,新方案可以减小风场和质量场分析误差,CMAMESO系统地面降水和10 m风场的预报评分显著提升。展开更多
提升降水量级预报精度,有助于优化灾害预警与决策支持。选取2018年1月1日至2021年1月山东省逐12 h降水观测数据和欧洲中期天气预报中心(the European Centre for Medium-Range Weather Forecasting,ECMWF)的集合预报集合平均(Ensemble P...提升降水量级预报精度,有助于优化灾害预警与决策支持。选取2018年1月1日至2021年1月山东省逐12 h降水观测数据和欧洲中期天气预报中心(the European Centre for Medium-Range Weather Forecasting,ECMWF)的集合预报集合平均(Ensemble Prediction Ensemble Mean,EPEM)结果进行72 h内逐12 h降水量级预报统计订正,然后对比ECMWF集合平均降水预报插值的原始预报(EC_EPEM)、基于EC_EPEM的输出统计(Model Output Statistics,MOS)预报(EC_EPEM_MOS)、利用最优TS(Threat Score)评分订正(Optimal Threat Score,OTS)预报(EC_EPEM_OTS)的效果。结果表明:EC_EPEM_MOS在较小量级上表现最优,但在大量级上订正效果稍差,甚至略低于EC_EPEM;EC_EPEM_OTS仅在0.1、10 mm量级上低于EC_EPEM_MOS,其他量级均为最优,尤其在较大量级上订正效果更明显。在50、100 mm大量级上,EC_EPEM_OTS在12~72 h时效订正效果均最优,这是由于EC_EPEM_OTS在稍大量级上提高订正系数使得大量级降水漏报率减小,同时对大量级降水使用较小订正系数也减小了空报率。在较小量级降水中短期预报时效除了山东中部山区外EC_EPEM_MOS表现最佳,山区EC_EPEM_OTS最佳;中等以上量级、尤其较大量级降水,山东大部分地区EC_EPEM_OTS表现最佳。EC_EPEM_MOS订正预报有效地减小了EC_EPEM的空报问题。EC_EPEM_OTS的订正效果最佳,在大范围强降雨过程中与实况降雨分布更为接近,降水总体分布把握较好。展开更多
文摘基于第六次耦合模式比较计划(CMIP6)的模式模拟数据和欧洲宇航局GlobSnow卫星遥感雪水当量(Snow Water Equivalent,SWE)资料,评估了CMIP6耦合模式对1981~2014年欧亚大陆冬季SWE的模拟能力,并应用多模式集合平均结果预估了21世纪欧亚大陆SWE的变化情况。结果表明,CMIP6耦合模式对冬季欧亚大陆中高纬度SWE空间分布具有较好的再现能力,能模拟出欧亚大陆中高纬度SWE的主要分布特征;耦合模式对SWE变化趋势及经验正交函数主要模态特征的模拟能力存在较大差异,但多模式集合能提高模式对SWE变化趋势和主要时空变化特征的模拟能力;此外,多模式集合结果对欧亚大陆冬季SWE与降水、气温的关系也有较好的再现能力。预估结果表明,21世纪欧亚大陆东北大部分地区的SWE均要高于基准期(1995~2014年),而90°E以西的欧洲大陆SWE基本上呈现减少的特征;21世纪早期,4种不同排放情景下积雪变化的差异不大,但21世纪后期积雪变化的幅度差异较大,而且排放越高积雪变化的幅度越大,模式不确定性也越大;进一步的分析表明,欧亚大陆冬季未来积雪变化特征的空间分布与全球变化背景下局地气温、降水的变化密切相关,高温高湿的条件有利于欧亚大陆东北部积雪的增多。