2024年5月27日,上海交通大学基础医学院解剖学与生理学系张思宇研究员团队在Nature Communications期刊在线发表题为Organization of corticocortical and thalamocortical top-down inputs in the primary visual cortex的研究论文。...2024年5月27日,上海交通大学基础医学院解剖学与生理学系张思宇研究员团队在Nature Communications期刊在线发表题为Organization of corticocortical and thalamocortical top-down inputs in the primary visual cortex的研究论文。该研究结合光遗传学和全细胞膜片钳记录系统性地解析了来自次级视皮层内侧区、扣带回皮层、眶额叶皮层和丘脑外侧后核的4条自上而下的输入对初级视皮层各亚层兴奋性神经元和抑制性神经元的调控特征和机制,阐明了多条自上而下输入采取的差异化信息处理及相互作用的策略,为研究多样的自上而下调控信号在行为中的相互作用奠定了基础。展开更多
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh...Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.展开更多
Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technolo...Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.展开更多
Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles an...Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.展开更多
In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting t...In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting the cargo of proteins,lipids,and other molecules to appropriate compartments via transport vesicles or intermediates.These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain(RAB)protein family,which is the largest subfamily of the RAS superfamily.Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases,including neurological disorders and neurodegenerative diseases.Therefore,it is important to understand the physiological and pathological roles of RAB proteins in brain function.RAB35,a member of the RAB family,is an evolutionarily conserved protein in metazoans.A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis,endocytic recycling,actin bundling,and cell migration.RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles.We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function.These mice exhibited defects in anxiety-related behaviors and spatial memory.Strikingly,RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development,and thereby for normal hippocampal lamination.In contrast,layer formation in the cerebral cortex occurred superficially,even in the absence of RAB35,suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development.Recent studies have suggested an association between RAB35 and neurodegenerative diseases,including Parkinson's disease and Alzheimer's disease.In this review,we provide an overview of the current understanding of subcellular functions of RAB35.We also provide insights into the physiological role of RAB35 in mammalian brain development and function,and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.展开更多
Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induc...Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induced polarization affects the interneuron response as the interneuron receives NMDA synaptic inputs.Considering the key role of NMDA receptor-mediated supralinear dendritic integration in neuronal computations,we suppose that the applied EFs could functionally modulate interneurons’response via regulating dendritic integration.At first,we build a simplified multi-dendritic circuit model with inhomogeneous extracellular potentials,which characterizes the relationship among EF-induced spatial polarizations,dendritic integration,and somatic output.By performing model-based singular perturbation analysis,it is found that the equilibrium point of fast subsystem can be used to asymptotically depict the subthreshold input–output(sI/O)relationship of dendritic integration.It predicted that EF-induced strong depolarizations on the distal dendrites reduce the dendritic saturation output by reducing driving force of synaptic input,and it shifts the steep change of sI/O curve left by reducing stimulation threshold of triggering NMDA spike.Also,the EF modulation prefers the global dendritic integration with asymmetric scatter distribution of NMDA synapses.Furthermore,we identify the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization to an action potential generation and find that they have an antagonistic effect on AP generation due to the varied NMDA spike threshold under EF stimulation.展开更多
The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel a...The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel activation.In this study,we evaluate how cooperative activation of sodium channels affects the neuron’s information processing and energy consumption.Simulations of the stochastic Hodgkin–Huxley model with cooperative activation of sodium channels show that,while cooperative activation enhances neuronal information processing capacity,it greatly increases the neuron’s energy consumption.As a result,cooperative activation of sodium channel degrades the energy efficiency for neuronal information processing.This discovery improves our understanding of the design principles for neural systems,and may provide insights into future designs of the neuromorphic computing devices as well as systematic understanding of pathological mechanisms for neural diseases.展开更多
Neurons carry apical dendrites that perceive information and a basal axon that transmits the computed information towards its to rgets.The axon originates at the axon hillock which is followed by the axon initial segm...Neurons carry apical dendrites that perceive information and a basal axon that transmits the computed information towards its to rgets.The axon originates at the axon hillock which is followed by the axon initial segment.Here,action potentials are initiated that are based on millisecond long openings of specific voltagegated sodium and potassium channels that are conserved in all parahoxozoa(Placozoa,Cnidaria,Bilateria)(Li et al.,2015).展开更多
In October 2023,a set of 21 papers published simultaneously in the journals Science,Science Advances,and Science Translational Medicine reported the largest,most-detailed maps to date of the cells making up portions o...In October 2023,a set of 21 papers published simultaneously in the journals Science,Science Advances,and Science Translational Medicine reported the largest,most-detailed maps to date of the cells making up portions of human and nonhuman primate brains[1,2].Accomplished by multiple large teams of neuroscientists in the United States and Europe,the collaborative effort also included the classification of 3300 different cell types in the human brain.展开更多
Multilayered control of myelination:Quick,saltatory conduction of action potentials along nerve fibers requires the electrical insulation of axons by myelinating glia.In the central nervous system,this role is taken u...Multilayered control of myelination:Quick,saltatory conduction of action potentials along nerve fibers requires the electrical insulation of axons by myelinating glia.In the central nervous system,this role is taken up by oligodendrocytes.Oligodendrocytes are marked by the expression of the lineage determinants Sox10 and Olig2 and arise from oligodendrocyte precursor cells(OPCs)during embryonal stages.While the majority of OPCs differentiate into mature oligodendrocytes when nearby axonal segments require myelination,a small subpopulation of OPCs persist as a progenitor pool.Therefore,the timing of myelination and maintenance of the OPC pool both need to be precisely regulated.Different transcription factors either positively or negatively affect oligodendrocyte differentiation and maintenance of the OPC pool as components of a complex gene regulatory network(reviewed in Sock and Wegner,2021).Network activity is additionally influenced by extracellular signaling molecules that bind to receptors on the oligodendroglial cell surface and activate intracellular signaling pathways.How the receptors are linked to the network is poorly understood so far,but pivotal to understanding the overall regulation of central nervous system(CNS)myelination in response to environmental cues.Relevant insights were recently gained for Gpr37(Schmidt et al.,2024),a G-protein coupled receptor(GPCR)with known relevance in differentiating oligodendrocytes(Yang et al,2016).展开更多
文摘2024年5月27日,上海交通大学基础医学院解剖学与生理学系张思宇研究员团队在Nature Communications期刊在线发表题为Organization of corticocortical and thalamocortical top-down inputs in the primary visual cortex的研究论文。该研究结合光遗传学和全细胞膜片钳记录系统性地解析了来自次级视皮层内侧区、扣带回皮层、眶额叶皮层和丘脑外侧后核的4条自上而下的输入对初级视皮层各亚层兴奋性神经元和抑制性神经元的调控特征和机制,阐明了多条自上而下输入采取的差异化信息处理及相互作用的策略,为研究多样的自上而下调控信号在行为中的相互作用奠定了基础。
文摘Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
基金supported by the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI)the Ministry of Health&Welfare,Republic of Korea (HR22C1734)+2 种基金the National Research Foundation (NRF) of Korea (2020R1A6A1A03043539,2020M3A9D8037604,2022R1C1C1004756)(to SBL)the NRF of Korea (2022R1C1C1005741 and RS-2023-00217595)the new faculty research fund of Ajou University School of Medicine (to EJL)。
文摘Elucidating the complex dynamic cellular organization in the hypothalamus is critical for understanding its role in coordinating fundamental body functions. Over the past decade, single-cell and spatial omics technologies have significantly evolved, overcoming initial technical challenges in capturing and analyzing individual cells. These high-throughput omics technologies now offer a remarkable opportunity to comprehend the complex spatiotemporal patterns of transcriptional diversity and cell-type characteristics across the entire hypothalamus. Current single-cell and single-nucleus RNA sequencing methods comprehensively quantify gene expression by exploring distinct phenotypes across various subregions of the hypothalamus. However, single-cell/single-nucleus RNA sequencing requires isolating the cell/nuclei from the tissue, potentially resulting in the loss of spatial information concerning neuronal networks. Spatial transcriptomics methods, by bypassing the cell dissociation, can elucidate the intricate spatial organization of neural networks through their imaging and sequencing technologies. In this review, we highlight the applicative value of single-cell and spatial transcriptomics in exploring the complex molecular-genetic diversity of hypothalamic cell types, driven by recent high-throughput achievements.
基金supported by the Research Funds of the Center for Advanced Interdisciplinary Science and Biomedicine of IHM,No.QYZD20220002the National Natural Science Foundation of China,No.82071357a grant from the Ministry of Science and Technology of China,No.2019YFA0405600 (all to BH)。
文摘Rab5 is a GTPase protein that is involved in intracellular membrane trafficking. It functions by binding to various effector proteins and regulating cellular responses, including the formation of transport vesicles and their fusion with the cellular membrane. Rab5 has been reported to play an important role in the development of the zebrafish embryo;however, its role in axonal regeneration in the central nervous system remains unclear. In this study, we established a zebrafish Mauthner cell model of axonal injury using single-cell electroporation and two-photon axotomy techniques. We found that overexpression of Rab5 in single Mauthner cells promoted marked axonal regeneration and increased the number of intra-axonal transport vesicles. In contrast, treatment of zebrafish larvae with the Rab kinase inhibitor CID-1067700markedly inhibited axonal regeneration in Mauthner cells. We also found that Rab5 activated phosphatidylinositol 3-kinase(PI3K) during axonal repair of Mauthner cells and promoted the recovery of zebrafish locomotor function. Additionally, rapamycin, an inhibitor of the mechanistic target of rapamycin downstream of PI3K, markedly hindered axonal regeneration. These findings suggest that Rab5 promotes the axonal regeneration of injured zebrafish Mauthner cells by activating the PI3K signaling pathway.
基金supported by the Japan Society for the Promotion of Science KAKENHI(grant Nos.23K05678 to IM,19H05711 and 20H00466 to KS)the Joint Research Program of Institute for Molecular and Cellular Regulation,Gunma University(to KS)。
文摘In eukaryotic cells,organelles in the secretory,lysosomal,and endocytic pathways actively exchange biological materials with each other through intracellular membrane trafficking,which is the process of transporting the cargo of proteins,lipids,and other molecules to appropriate compartments via transport vesicles or intermediates.These processes are strictly regulated by various small GTPases such as the RAS-like in rat brain(RAB)protein family,which is the largest subfamily of the RAS superfamily.Dysfunction of membrane trafficking affects tissue homeostasis and leads to a wide range of diseases,including neurological disorders and neurodegenerative diseases.Therefore,it is important to understand the physiological and pathological roles of RAB proteins in brain function.RAB35,a member of the RAB family,is an evolutionarily conserved protein in metazoans.A wide range of studies using cultured mammalian cells and model organisms have revealed that RAB35 mediates various processes such as cytokinesis,endocytic recycling,actin bundling,and cell migration.RAB35 is also involved in neurite outgrowth and turnover of synaptic vesicles.We generated brain-specific Rab35 knockout mice to study the physiological roles of RAB35 in brain development and function.These mice exhibited defects in anxiety-related behaviors and spatial memory.Strikingly,RAB35 is required for the precise positioning of pyramidal neurons during hippocampal development,and thereby for normal hippocampal lamination.In contrast,layer formation in the cerebral cortex occurred superficially,even in the absence of RAB35,suggesting a predominant role for RAB35 in hippocampal development rather than in cerebral cortex development.Recent studies have suggested an association between RAB35 and neurodegenerative diseases,including Parkinson's disease and Alzheimer's disease.In this review,we provide an overview of the current understanding of subcellular functions of RAB35.We also provide insights into the physiological role of RAB35 in mammalian brain development and function,and discuss the involvement of RAB35 dysfunction in neurodegenerative diseases.
基金Project supported by the National Natural Science Foundation of China(Grant No.62171312)the Tianjin Municipal Education Commission Scientific Research Project,China(Grant No.2020KJ114).
文摘Evidences show that electric fields(EFs)induced by the magnetic stimulation could modulates brain activities by regulating the excitability of GABAergic interneuron.However,it is still unclear how and why the EF-induced polarization affects the interneuron response as the interneuron receives NMDA synaptic inputs.Considering the key role of NMDA receptor-mediated supralinear dendritic integration in neuronal computations,we suppose that the applied EFs could functionally modulate interneurons’response via regulating dendritic integration.At first,we build a simplified multi-dendritic circuit model with inhomogeneous extracellular potentials,which characterizes the relationship among EF-induced spatial polarizations,dendritic integration,and somatic output.By performing model-based singular perturbation analysis,it is found that the equilibrium point of fast subsystem can be used to asymptotically depict the subthreshold input–output(sI/O)relationship of dendritic integration.It predicted that EF-induced strong depolarizations on the distal dendrites reduce the dendritic saturation output by reducing driving force of synaptic input,and it shifts the steep change of sI/O curve left by reducing stimulation threshold of triggering NMDA spike.Also,the EF modulation prefers the global dendritic integration with asymmetric scatter distribution of NMDA synapses.Furthermore,we identify the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization to an action potential generation and find that they have an antagonistic effect on AP generation due to the varied NMDA spike threshold under EF stimulation.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-62)the Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX01)Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence(LCNBI)and ZJLab,and the National Natural Science Foundation of China(Grant No.12247101).
文摘The Hodgkin–Huxley model assumes independent ion channel activation,although mutual interactions are common in biological systems.This raises the problem why neurons would favor independent over cooperative channel activation.In this study,we evaluate how cooperative activation of sodium channels affects the neuron’s information processing and energy consumption.Simulations of the stochastic Hodgkin–Huxley model with cooperative activation of sodium channels show that,while cooperative activation enhances neuronal information processing capacity,it greatly increases the neuron’s energy consumption.As a result,cooperative activation of sodium channel degrades the energy efficiency for neuronal information processing.This discovery improves our understanding of the design principles for neural systems,and may provide insights into future designs of the neuromorphic computing devices as well as systematic understanding of pathological mechanisms for neural diseases.
基金supported by the Deutsche Forschungsgemeinschaft through funds to CK(SFB1348,B5,KI 588/29)。
文摘Neurons carry apical dendrites that perceive information and a basal axon that transmits the computed information towards its to rgets.The axon originates at the axon hillock which is followed by the axon initial segment.Here,action potentials are initiated that are based on millisecond long openings of specific voltagegated sodium and potassium channels that are conserved in all parahoxozoa(Placozoa,Cnidaria,Bilateria)(Li et al.,2015).
文摘In October 2023,a set of 21 papers published simultaneously in the journals Science,Science Advances,and Science Translational Medicine reported the largest,most-detailed maps to date of the cells making up portions of human and nonhuman primate brains[1,2].Accomplished by multiple large teams of neuroscientists in the United States and Europe,the collaborative effort also included the classification of 3300 different cell types in the human brain.
基金supported by grants from the Deutsche Forschungsgemeinschaft to MW。
文摘Multilayered control of myelination:Quick,saltatory conduction of action potentials along nerve fibers requires the electrical insulation of axons by myelinating glia.In the central nervous system,this role is taken up by oligodendrocytes.Oligodendrocytes are marked by the expression of the lineage determinants Sox10 and Olig2 and arise from oligodendrocyte precursor cells(OPCs)during embryonal stages.While the majority of OPCs differentiate into mature oligodendrocytes when nearby axonal segments require myelination,a small subpopulation of OPCs persist as a progenitor pool.Therefore,the timing of myelination and maintenance of the OPC pool both need to be precisely regulated.Different transcription factors either positively or negatively affect oligodendrocyte differentiation and maintenance of the OPC pool as components of a complex gene regulatory network(reviewed in Sock and Wegner,2021).Network activity is additionally influenced by extracellular signaling molecules that bind to receptors on the oligodendroglial cell surface and activate intracellular signaling pathways.How the receptors are linked to the network is poorly understood so far,but pivotal to understanding the overall regulation of central nervous system(CNS)myelination in response to environmental cues.Relevant insights were recently gained for Gpr37(Schmidt et al.,2024),a G-protein coupled receptor(GPCR)with known relevance in differentiating oligodendrocytes(Yang et al,2016).