Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at th...Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.展开更多
The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKS...The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders,particularly intellectual disability,although the precise mechanism involved has not yet been fully understood.Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane,thereby influencing synaptic signaling and the morphogenesis of dendritic spines.However,the function of CNKSR2 in the cytoplasm remains to be elucidated.In this study,we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2.Through a combination of bioinformatic analysis and cytological experiments,we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome.We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290.Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2.When we downregulated CNKSR2 expression in mouse neuroblastoma cells(Neuro 2A),we observed significant changes in the expression of numerous centrosomal genes.This manipulation also affected centrosome-related functions,including cell size and shape,cell proliferation,and motility.Furthermore,we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder.Our findings establish a connection between CNKSR2 and the centrosome,and offer new insights into the underlying mechanisms of neurodevelopmental disorders.展开更多
TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal...TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.展开更多
Autophagy plays a pivotal role in diverse biological processes,including the maintenance and differentiation of neural stem cells(NSCs).Interestingly,while complete deletion of Fip200 severely impairs NSC maintenance ...Autophagy plays a pivotal role in diverse biological processes,including the maintenance and differentiation of neural stem cells(NSCs).Interestingly,while complete deletion of Fip200 severely impairs NSC maintenance and differentiation,inhibiting canonical autophagy via deletion of core genes,such as Atg5,Atg16l1,and Atg7,or blockade of canonical interactions between FIP200 and ATG13(designated as FIP200-4A mutant or FIP200 KI)does not produce comparable detrimental effects.This highlights the likely critical involvement of the non-canonical functions of FIP200,the mechanisms of which have remained elusive.Here,utilizing genetic mouse models,we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1,primarily via TAX1BP1 in NSCs.Conditional deletion of Tax1bp1 in fip200hGFAP conditional knock-in(cKI)mice led to NSC deficiency,resembling the fip200hGFAP conditional knockout(cKO)mouse phenotype.Notably,reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation.Conversely,a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration.Furthermore,conditional deletion of Tax1bp1 in fip200hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200hGFAP cKO mice.Collectively,these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function,presenting novel therapeutic targets for neurodegenerative diseases.展开更多
Neurons are energy-demanding cells.Disruptions in energy metabolism can quickly interrupt neuronal function,leading to cell death and neurodegeneration.For instance,ischemia rapidly depletes adenosine triphosphate(ATP...Neurons are energy-demanding cells.Disruptions in energy metabolism can quickly interrupt neuronal function,leading to cell death and neurodegeneration.For instance,ischemia rapidly depletes adenosine triphosphate(ATP)thereby disrupting energy-dependent cellular processes crucial for homeostasis,and axon degeneration is preceded by a collapse of axonal ATP levels.展开更多
Apolipoprotein E has diverse functions in neurons:Apolipoprotein E(ApoE)is a glycoprotein that primarily regulates lipid metabolism and transport in the central nervous system.There are three predominant human ApoE pr...Apolipoprotein E has diverse functions in neurons:Apolipoprotein E(ApoE)is a glycoprotein that primarily regulates lipid metabolism and transport in the central nervous system.There are three predominant human ApoE protein isoforms with cysteine and arginine substitutions at amino acid positions 112 and 158 that impact their lipidation and related functions(Flowers and Rebeck,2020).ApoE2 is characterized by Cys112 and Cys158,ApoE3 by Cys112 and Arg158,whereas ApoE4 contains Arg112 and Arg158.展开更多
Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w...Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).展开更多
Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuron...Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time.展开更多
基金supported by the National Key Research and Development Program of China,No.2021ZD0202503(to AHT)the National Natural Science Foundation of China,Nos.31872759(to AHT)and 32070707(to CF)+1 种基金Shenzhen Science and Technology Program,No.RCJC20210609104333007(to ZW)Shenzhen-Hong Kong Institute of Brain Science,Shenzhen Fundamental Research Institutions,No.2021SHIBS0002(to ZW).
文摘Morphological alterations in dendritic spines have been linked to changes in functional communication between neurons that affect learning and memory.Kinesin-4 KIF21A helps organize the microtubule-actin network at the cell cortex by interacting with KANK1;however,whether KIF21A modulates dendritic structure and function in neurons remains unknown.In this study,we found that KIF21A was distributed in a subset of dendritic spines,and that these KIF21A-positive spines were larger and more structurally plastic than KIF21A-negative spines.Furthermore,the interaction between KIF21A and KANK1 was found to be critical for dendritic spine morphogenesis and synaptic plasticity.Knockdown of either KIF21A or KANK1 inhibited dendritic spine morphogenesis and dendritic branching,and these deficits were fully rescued by coexpressing full-length KIF21A or KANK1,but not by proteins with mutations disrupting direct binding between KIF21A and KANK1 or binding between KANK1 and talin1.Knocking down KIF21A in the hippocampus of rats inhibited the amplitudes of long-term potentiation induced by high-frequency stimulation and negatively impacted the animals’cognitive abilities.Taken together,our findings demonstrate the function of KIF21A in modulating spine morphology and provide insight into its role in synaptic function.
基金supported by the National Nature Science Foundation of China,No.32101020(to JL)the Natural Science Foundation of Shandong Province,Nos.ZR2020MC071(to JL),ZR2023MH327(to HZ)+1 种基金the Integrated Project of Major Research Plan of National Natural Science Foundation of China,No.92249303(to PL)the Natural Science Foundation of Qingdao,No.23-2-1-193-zyyd-jch(to HZ)。
文摘The protein connector enhancer of kinase suppressor of Ras 2(CNKSR2),present in both the postsynaptic density and cytoplasm of neurons,is a scaffolding protein with several protein-binding domains.Variants of the CNKSR2 gene have been implicated in neurodevelopmental disorders,particularly intellectual disability,although the precise mechanism involved has not yet been fully understood.Research has demonstrated that CNKSR2 plays a role in facilitating the localization of postsynaptic density protein complexes to the membrane,thereby influencing synaptic signaling and the morphogenesis of dendritic spines.However,the function of CNKSR2 in the cytoplasm remains to be elucidated.In this study,we used immunoprecipitation and high-resolution liquid chromatography-mass spectrometry to identify the interactors of CNKSR2.Through a combination of bioinformatic analysis and cytological experiments,we found that the CNKSR2 interactors were significantly enriched in the proteome of the centrosome.We also showed that CNKSR2 interacted with the microtubule protein DYNC1H1 and with the centrosome marker CEP290.Subsequent colocalization analysis confirmed the centrosomal localization of CNKSR2.When we downregulated CNKSR2 expression in mouse neuroblastoma cells(Neuro 2A),we observed significant changes in the expression of numerous centrosomal genes.This manipulation also affected centrosome-related functions,including cell size and shape,cell proliferation,and motility.Furthermore,we found that CNKSR2 interactors were highly enriched in de novo variants associated with intellectual disability and autism spectrum disorder.Our findings establish a connection between CNKSR2 and the centrosome,and offer new insights into the underlying mechanisms of neurodevelopmental disorders.
基金supported by the Koeln Fortune Program/Faculty of Medicine,University of Cologne,the Alzheimer Forschung Initiative e.V.(grant#22039,to HZ)open-access funding from the DFG/GRC issued to the University of CologneAlzheimer Forschung Initiative e.V.for Open Access Publishing(a publication grant#P2401,to MAAK)。
文摘TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.
基金National Natural Science Foundation of China(U2004138,81773132,81820108021)University Excellent Teaching Team of“Qinglan Project”in Jiangsu Province(2022-25)+1 种基金Henan Province Key Research and Development Project(232102521028)Excellent Youth Foundation of Henan Scientific Committee(21230040016)。
文摘Autophagy plays a pivotal role in diverse biological processes,including the maintenance and differentiation of neural stem cells(NSCs).Interestingly,while complete deletion of Fip200 severely impairs NSC maintenance and differentiation,inhibiting canonical autophagy via deletion of core genes,such as Atg5,Atg16l1,and Atg7,or blockade of canonical interactions between FIP200 and ATG13(designated as FIP200-4A mutant or FIP200 KI)does not produce comparable detrimental effects.This highlights the likely critical involvement of the non-canonical functions of FIP200,the mechanisms of which have remained elusive.Here,utilizing genetic mouse models,we demonstrated that FIP200 mediates non-canonical autophagic degradation of p62/sequestome1,primarily via TAX1BP1 in NSCs.Conditional deletion of Tax1bp1 in fip200hGFAP conditional knock-in(cKI)mice led to NSC deficiency,resembling the fip200hGFAP conditional knockout(cKO)mouse phenotype.Notably,reintroducing wild-type TAX1BP1 not only restored the maintenance of NSCs derived from tax1bp1-knockout fip200hGFAP cKI mice but also led to a marked reduction in p62 aggregate accumulation.Conversely,a TAX1BP1 mutant incapable of binding to FIP200 or NBR1/p62 failed to achieve this restoration.Furthermore,conditional deletion of Tax1bp1 in fip200hGFAP cKO mice exacerbated NSC deficiency and p62 aggregate accumulation compared to fip200hGFAP cKO mice.Collectively,these findings illustrate the essential role of the FIP200-TAX1BP1 axis in mediating the non-canonical autophagic degradation of p62 aggregates towards NSC maintenance and function,presenting novel therapeutic targets for neurodegenerative diseases.
基金supported by National Institute of Health awards NS118000 and NS128049 (to GG)。
文摘Neurons are energy-demanding cells.Disruptions in energy metabolism can quickly interrupt neuronal function,leading to cell death and neurodegeneration.For instance,ischemia rapidly depletes adenosine triphosphate(ATP)thereby disrupting energy-dependent cellular processes crucial for homeostasis,and axon degeneration is preceded by a collapse of axonal ATP levels.
基金supported by core funding provided by Temasek Life Sciences Laboratory(to CTO)。
文摘Apolipoprotein E has diverse functions in neurons:Apolipoprotein E(ApoE)is a glycoprotein that primarily regulates lipid metabolism and transport in the central nervous system.There are three predominant human ApoE protein isoforms with cysteine and arginine substitutions at amino acid positions 112 and 158 that impact their lipidation and related functions(Flowers and Rebeck,2020).ApoE2 is characterized by Cys112 and Cys158,ApoE3 by Cys112 and Arg158,whereas ApoE4 contains Arg112 and Arg158.
基金funded by CONAHCYT grant(252808)to GFCONAHCYT’s“Estancias Posdoctorales por México”program(662350)to HTB。
文摘Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).
文摘Animals exhibit complex responses to external and internal stimuli.The information is computed by interconnected neurons that express numerous ion channels,which modulate the neuronal membrane potential.How can neuronal activity orchestrate complex motor patterns or allow learning from previous experience?To answer such questions,we need the ability not only to record,but also to modulate neuronal activity in both space(e.g.,neuronal subsets)and time.