The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical sys-tems are reviewed for acoustic,vibration,and vibration fatigue applications.The main trends and relationsh...The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical sys-tems are reviewed for acoustic,vibration,and vibration fatigue applications.The main trends and relationships were obtained for linear mechanical models with hysteresis damping.The well-known features(complex module of elasticity,total loss factor,etc.)are clarified for practical engineers and students,and new results are presented(in particular,for 2-DOF in-series models with hysteresis friction).The results are of both educational and prac-tical interest and may be applied for NVH analysis and testing,mechanical and aeromechanical design,and noise and vibration control in buildings.展开更多
The hub-driven virtual rail train is a novel urban transportation system that amalgamates the benefits of modern trams and buses.However,this system is plagued by issues such as decreased ride comfort and severe defor...The hub-driven virtual rail train is a novel urban transportation system that amalgamates the benefits of modern trams and buses.However,this system is plagued by issues such as decreased ride comfort and severe deformation of urban roads due to the increase in sprung mass and long-term rolling at the same position.To address these concerns and improve the human-vehicle-road friendliness of the virtual rail train,we propose an Improved Sky-Ground Hook and Acceleration-Driven Damper control(Improved SH-GH-ADD control)strategy for the semi-active suspension system.This control monitors the vibration acceleration signal of the unsprung mass in real-time and selects the mixed Sky-Hook and Acceleration-Driven Damper(SH-ADD)control or the mixed Ground-Hook and Acceleration-Driven Damper(GH-ADD)control based on the positive and negative values of the vibration acceleration of the unsprung mass.The Improved SH-GH-ADD control combines the advantages of SH-ADD control and GH-ADD control to achieve control of the sprung mass and unsprung mass in the full fre-quency band.Finally,through simulation and comparative analysis with traditional SH-ADD,GH-ADD,and mixed SH-GH control,we demonstrate the exceptional performance of the proposed algorithm.展开更多
在分析管道中超声导波时反聚焦原理的基础上,设计并实现了一套适合激励压电换能器阵列,并对管道中超声导波能量在缺陷处进行时间-空间聚焦的时反聚焦检测系统。该系统实现的关键技术为:改进DDS(direct digital synthesis)结构,实现脉冲...在分析管道中超声导波时反聚焦原理的基础上,设计并实现了一套适合激励压电换能器阵列,并对管道中超声导波能量在缺陷处进行时间-空间聚焦的时反聚焦检测系统。该系统实现的关键技术为:改进DDS(direct digital synthesis)结构,实现脉冲激励电路对时反特征信号进行合成发射;采用脉冲方式,实现小体积大输出功率的宽带线性功放电路;通过时反聚焦检测过程,实现管道中超声导波能量在缺陷处的时间-空间聚焦。采用该系统进行八通道时反聚焦检测实验,其结果表明,对于所用的含缺陷的管道而言,在特定的检测条件下,缺陷回波信号的幅值相对常规检测可提高246%,并且很好地抑制了导波的频散和多模态特性,提高了回波信号的信噪比。展开更多
文摘The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical sys-tems are reviewed for acoustic,vibration,and vibration fatigue applications.The main trends and relationships were obtained for linear mechanical models with hysteresis damping.The well-known features(complex module of elasticity,total loss factor,etc.)are clarified for practical engineers and students,and new results are presented(in particular,for 2-DOF in-series models with hysteresis friction).The results are of both educational and prac-tical interest and may be applied for NVH analysis and testing,mechanical and aeromechanical design,and noise and vibration control in buildings.
基金This research was funded by Natural Science Foundation of Sichuan Province(2023NSFSC0395)the Sichuan Science and Technology Program(2022ZH CG0061)the SWJTU Science and Technology Innovation Project(2682022CX008).
文摘The hub-driven virtual rail train is a novel urban transportation system that amalgamates the benefits of modern trams and buses.However,this system is plagued by issues such as decreased ride comfort and severe deformation of urban roads due to the increase in sprung mass and long-term rolling at the same position.To address these concerns and improve the human-vehicle-road friendliness of the virtual rail train,we propose an Improved Sky-Ground Hook and Acceleration-Driven Damper control(Improved SH-GH-ADD control)strategy for the semi-active suspension system.This control monitors the vibration acceleration signal of the unsprung mass in real-time and selects the mixed Sky-Hook and Acceleration-Driven Damper(SH-ADD)control or the mixed Ground-Hook and Acceleration-Driven Damper(GH-ADD)control based on the positive and negative values of the vibration acceleration of the unsprung mass.The Improved SH-GH-ADD control combines the advantages of SH-ADD control and GH-ADD control to achieve control of the sprung mass and unsprung mass in the full fre-quency band.Finally,through simulation and comparative analysis with traditional SH-ADD,GH-ADD,and mixed SH-GH control,we demonstrate the exceptional performance of the proposed algorithm.
文摘在分析管道中超声导波时反聚焦原理的基础上,设计并实现了一套适合激励压电换能器阵列,并对管道中超声导波能量在缺陷处进行时间-空间聚焦的时反聚焦检测系统。该系统实现的关键技术为:改进DDS(direct digital synthesis)结构,实现脉冲激励电路对时反特征信号进行合成发射;采用脉冲方式,实现小体积大输出功率的宽带线性功放电路;通过时反聚焦检测过程,实现管道中超声导波能量在缺陷处的时间-空间聚焦。采用该系统进行八通道时反聚焦检测实验,其结果表明,对于所用的含缺陷的管道而言,在特定的检测条件下,缺陷回波信号的幅值相对常规检测可提高246%,并且很好地抑制了导波的频散和多模态特性,提高了回波信号的信噪比。