提出将一种求解盲源分离问题的独立分量分析(Independent Component Analysis,ICA)算法应用于自然裂纹涡流检测(Eddy Current Testing,ECT)信号的预处理中。利用一种基于负熵极大的FastICA算法,分别对实验产生的疲劳裂纹和应力腐蚀裂纹...提出将一种求解盲源分离问题的独立分量分析(Independent Component Analysis,ICA)算法应用于自然裂纹涡流检测(Eddy Current Testing,ECT)信号的预处理中。利用一种基于负熵极大的FastICA算法,分别对实验产生的疲劳裂纹和应力腐蚀裂纹ECT信号进行了处理,实现了ECT信号中缺陷分量与探头提离信号、部分噪声信号的有效分离。为了验证算法的有效性,同时采用小波分析算法对相同ECT信号进行了去噪处理。结果表明ICA算法在ECT信号处理中具有独特优势。展开更多
文摘提出将一种求解盲源分离问题的独立分量分析(Independent Component Analysis,ICA)算法应用于自然裂纹涡流检测(Eddy Current Testing,ECT)信号的预处理中。利用一种基于负熵极大的FastICA算法,分别对实验产生的疲劳裂纹和应力腐蚀裂纹ECT信号进行了处理,实现了ECT信号中缺陷分量与探头提离信号、部分噪声信号的有效分离。为了验证算法的有效性,同时采用小波分析算法对相同ECT信号进行了去噪处理。结果表明ICA算法在ECT信号处理中具有独特优势。