In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter,the existing dressing methods are not suitable to dress the ball-he...In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter,the existing dressing methods are not suitable to dress the ball-headed diamond wheel precisely due to that they are either on-line in process dressing which may causes collision problem or without consideration for the effects of the tool setting error and electrode wear.An on-machine precision preparation and dressing method is proposed for ball-headed diamond wheel based on electrical discharge machining.By using this method the cylindrical diamond wheel with small diameter is manufactured to hemispherical-headed form.The obtained ball-headed diamond wheel is dressed after several grinding passes to recover geometrical accuracy and sharpness which is lost due to the wheel wear.A tool setting method based on high precision optical system is presented to reduce the wheel center setting error and dimension error.The effect of electrode tool wear is investigated by electrical dressing experiments,and the electrode tool wear compensation model is established based on the experimental results which show that the value of wear ratio coefficient K’ tends to be constant with the increasing of the feed length of electrode and the mean value of K’ is 0.156.Grinding experiments of fused silica are carried out on a test bench to evaluate the performance of the preparation and dressing method.The experimental results show that the surface roughness of the finished workpiece is 0.03 μm.The effect of the grinding parameter and dressing frequency on the surface roughness is investigated based on the measurement results of the surface roughness.This research provides an on-machine preparation and dressing method for ball-headed metal bonded diamond wheel used in the grinding of fused silica,which provides a solution to the tool setting method and the effect of electrode tool wear.展开更多
Applications of bare and modified diamond electrodes in electroanalysis;Assessment of the wear of diamond beads in the cutting of different rock types by the ridge regression;Atomic force microscope using a diamond ti...Applications of bare and modified diamond electrodes in electroanalysis;Assessment of the wear of diamond beads in the cutting of different rock types by the ridge regression;Atomic force microscope using a diamond tip: a toolfor micro/nano-machining on single crystal silicon surface;Atomic Level Analysis of Carbon Materials with the Scanning Atom展开更多
基金supported by National Natural Science Foundation of China(Grant No.50935003)National Numerical Control Major Projects of China(Grant No.2013ZX04001000-215)
文摘In the grinding of high quality fused silica parts with complex surface or structure using ball-headed metal bonded diamond wheel with small diameter,the existing dressing methods are not suitable to dress the ball-headed diamond wheel precisely due to that they are either on-line in process dressing which may causes collision problem or without consideration for the effects of the tool setting error and electrode wear.An on-machine precision preparation and dressing method is proposed for ball-headed diamond wheel based on electrical discharge machining.By using this method the cylindrical diamond wheel with small diameter is manufactured to hemispherical-headed form.The obtained ball-headed diamond wheel is dressed after several grinding passes to recover geometrical accuracy and sharpness which is lost due to the wheel wear.A tool setting method based on high precision optical system is presented to reduce the wheel center setting error and dimension error.The effect of electrode tool wear is investigated by electrical dressing experiments,and the electrode tool wear compensation model is established based on the experimental results which show that the value of wear ratio coefficient K’ tends to be constant with the increasing of the feed length of electrode and the mean value of K’ is 0.156.Grinding experiments of fused silica are carried out on a test bench to evaluate the performance of the preparation and dressing method.The experimental results show that the surface roughness of the finished workpiece is 0.03 μm.The effect of the grinding parameter and dressing frequency on the surface roughness is investigated based on the measurement results of the surface roughness.This research provides an on-machine preparation and dressing method for ball-headed metal bonded diamond wheel used in the grinding of fused silica,which provides a solution to the tool setting method and the effect of electrode tool wear.
文摘Applications of bare and modified diamond electrodes in electroanalysis;Assessment of the wear of diamond beads in the cutting of different rock types by the ridge regression;Atomic force microscope using a diamond tip: a toolfor micro/nano-machining on single crystal silicon surface;Atomic Level Analysis of Carbon Materials with the Scanning Atom