第七届全国大学生工程训练综合能力竞赛智能+赛道基于机器视觉的智能物流搬运机器人,对OpenMV4视觉模块进行研究,应用该模块进行二维码、不同颜色物料等多种目标的识别,信息经过模块上STM32F427微控制器的处理,与Arduino Mega 2560板通...第七届全国大学生工程训练综合能力竞赛智能+赛道基于机器视觉的智能物流搬运机器人,对OpenMV4视觉模块进行研究,应用该模块进行二维码、不同颜色物料等多种目标的识别,信息经过模块上STM32F427微控制器的处理,与Arduino Mega 2560板通信,机器人识别场地上的三个区域,用PID算法驱动麦克纳姆轮机器人的四个直流电机旋转并且定位机器人,通过PCA9685模块的I2C通信协议,发送PWM脉冲信号给机械臂上的四个关节舵机,使智能物流搬运机器人对场地上的物料进行自动搬运。实验证明其可以较为精确地完成各项搬运任务。展开更多
针对轴承微小故障信号非平稳非线性且易受背景噪声干扰的特点,提出了一种基于格拉姆角场和多尺度卷积神经网络(Gramian angular field and multi-scale convolutional neural network,GAF-MCNN)的智能故障诊断方法。首先,利用分段聚合...针对轴承微小故障信号非平稳非线性且易受背景噪声干扰的特点,提出了一种基于格拉姆角场和多尺度卷积神经网络(Gramian angular field and multi-scale convolutional neural network,GAF-MCNN)的智能故障诊断方法。首先,利用分段聚合近似算法对原始振动信号进行压缩降维预处理,以减少数据存储空间和提升计算效率;然后,利用格拉姆角场算法将一维序列信号转换为二维矩阵热图,二维化后的矩阵加强了原始振动信号间的时间关系,将时间维度编码到了矩阵结构中;最后,设计了基于多尺度卷积神经网络对故障进行高效快速智能诊断。实验结果表明,GAF-MCNN诊断方法不仅克服了传统卷积神经网络诊断方法存在的计算效率较低的问题,而且诊断准确率优于单尺度卷积神经网络方法,具有较强的工程实用性。展开更多
文摘第七届全国大学生工程训练综合能力竞赛智能+赛道基于机器视觉的智能物流搬运机器人,对OpenMV4视觉模块进行研究,应用该模块进行二维码、不同颜色物料等多种目标的识别,信息经过模块上STM32F427微控制器的处理,与Arduino Mega 2560板通信,机器人识别场地上的三个区域,用PID算法驱动麦克纳姆轮机器人的四个直流电机旋转并且定位机器人,通过PCA9685模块的I2C通信协议,发送PWM脉冲信号给机械臂上的四个关节舵机,使智能物流搬运机器人对场地上的物料进行自动搬运。实验证明其可以较为精确地完成各项搬运任务。
文摘针对轴承微小故障信号非平稳非线性且易受背景噪声干扰的特点,提出了一种基于格拉姆角场和多尺度卷积神经网络(Gramian angular field and multi-scale convolutional neural network,GAF-MCNN)的智能故障诊断方法。首先,利用分段聚合近似算法对原始振动信号进行压缩降维预处理,以减少数据存储空间和提升计算效率;然后,利用格拉姆角场算法将一维序列信号转换为二维矩阵热图,二维化后的矩阵加强了原始振动信号间的时间关系,将时间维度编码到了矩阵结构中;最后,设计了基于多尺度卷积神经网络对故障进行高效快速智能诊断。实验结果表明,GAF-MCNN诊断方法不仅克服了传统卷积神经网络诊断方法存在的计算效率较低的问题,而且诊断准确率优于单尺度卷积神经网络方法,具有较强的工程实用性。