利用 LP- MOCVD技术在 Ga As( 0 0 1 )衬底上生长了高质量的立方相 In Ga N外延层 .研究了生长速率对 In Ga N质量的影响 ,提出一个简单模型解释了在改变 TEGa流量条件下出现的In组分的变化规律 ,实验结果与模型的一次项拟合结果较为吻...利用 LP- MOCVD技术在 Ga As( 0 0 1 )衬底上生长了高质量的立方相 In Ga N外延层 .研究了生长速率对 In Ga N质量的影响 ,提出一个简单模型解释了在改变 TEGa流量条件下出现的In组分的变化规律 ,实验结果与模型的一次项拟合结果较为吻合 ,由此推断 ,在现在的生长条件下 ,表面单个 Ga原子作为临界晶核吸附 Ga或 In原子实现生长的模型与实际情况较为接近 .对于晶体质量的变化也给予了说明 .得到的高质量立方相 In Ga N室温下有很强的发光峰 ,光致发光峰半高宽为 1 2 8me V左右 .展开更多
基金Supported by the national Natural Science Foundation of China(60676063)the Science and Technology Commssion of Shanghai Mu-nicipality(05ZR14133,06JC14072)the Knowledge Innovation Program of Chinese Academy of Sciences.
文摘为了得到高性能的 Ga N基发光器件 ,有源层采用 MOCVD技术和表面应力的不均匀性诱导方法生长了 In-Ga N量子点 ,并通过原子力显微镜 (AFM)、透射电子显微镜 (TEM)和光致发光 (PL )谱对其微观形貌和光学性质进行了观察和研究 .AFM和 TEM观察结果表明 :In Ga N/ Ga N为平均直径约 30 nm,高度约 2 5 nm的圆锥 ;In Ga N量子点主要集中在圆锥形的顶部 ,其密度达到 5 .6× 10 1 0 cm- 2 .室温下 ,In Ga N量子点材料 PL谱强度大大超出相同生长时间的 In Ga N薄膜材料 ,这说明 In Ga N量子点有望作为高性能有源层材料应用于 Ga N基发光器件 .