针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图...针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图像空间维度信息的同时降低模型参数量.改进YOLOv5特征金字塔网络结构,融合浅层网络中的特征图,增加模型对图像低维有效信息的表达能力,进而提升小目标检测精度.同时为了降低航拍图像中复杂背景带来的干扰,引入无参平均注意力模块,同时关注图像的空间注意力与通道注意力;引入VariFocal Loss,降低负样本在训练过程中的权重占比.在VisDrone数据集上的实验验证文中模型的有效性,该模型在有效提升检测精度的同时明显降低复杂度.展开更多
针对不均衡数据分类问题中原有过采样方法在生成样本分布上存在的不足,文章提出改进合成样本分布的加权过采样方法——WKSMOTE(Weighted SMOTE for WKMeans preprocess)。首先,应用聚类算法中的WKMeans算法对原数据集进行预处理,进而划...针对不均衡数据分类问题中原有过采样方法在生成样本分布上存在的不足,文章提出改进合成样本分布的加权过采样方法——WKSMOTE(Weighted SMOTE for WKMeans preprocess)。首先,应用聚类算法中的WKMeans算法对原数据集进行预处理,进而划分少数类样本,使每个样本生成不同数量的新样本;然后,应用SMOTE算法合成新样本,增强决策边界;最后,将过采样后的均衡数据集在随机森林分类器中进行训练。实验结果表明,WKSMOTE方法对不均衡数据集的整体分类性能有一定的提升,验证了方法的有效性。展开更多
文摘针对无人机航拍图像目标检测中视野变化大、时空信息复杂等问题,文中基于YOLOv5(You Only Look Once Version5)架构,提出基于图像低维特征融合的航拍小目标检测模型.引入CA(Coordinate Attention),改进MobileNetV3的反转残差块,增加图像空间维度信息的同时降低模型参数量.改进YOLOv5特征金字塔网络结构,融合浅层网络中的特征图,增加模型对图像低维有效信息的表达能力,进而提升小目标检测精度.同时为了降低航拍图像中复杂背景带来的干扰,引入无参平均注意力模块,同时关注图像的空间注意力与通道注意力;引入VariFocal Loss,降低负样本在训练过程中的权重占比.在VisDrone数据集上的实验验证文中模型的有效性,该模型在有效提升检测精度的同时明显降低复杂度.
文摘针对不均衡数据分类问题中原有过采样方法在生成样本分布上存在的不足,文章提出改进合成样本分布的加权过采样方法——WKSMOTE(Weighted SMOTE for WKMeans preprocess)。首先,应用聚类算法中的WKMeans算法对原数据集进行预处理,进而划分少数类样本,使每个样本生成不同数量的新样本;然后,应用SMOTE算法合成新样本,增强决策边界;最后,将过采样后的均衡数据集在随机森林分类器中进行训练。实验结果表明,WKSMOTE方法对不均衡数据集的整体分类性能有一定的提升,验证了方法的有效性。