针对无线体域网(wireless body area network,WBAN)异常数据检测方法忽视人体异常数据的连续性,缺乏异常数据集检测等问题,提出一种基于Hampel滤波器和DBSCAN分层的WBAN异常数据检测方法。根据时间相关性利用Hampel滤波器检测异常数据点...针对无线体域网(wireless body area network,WBAN)异常数据检测方法忽视人体异常数据的连续性,缺乏异常数据集检测等问题,提出一种基于Hampel滤波器和DBSCAN分层的WBAN异常数据检测方法。根据时间相关性利用Hampel滤波器检测异常数据点,保证数据的连续性,使用改进的基于滑动时间窗的DBSCAN算法,检测异常数据集。实验结果表明,所提方法和其它方法相比,实现了分层的异常数据检测,在保证检测精度的同时准确标注出了异常数据集,具有空间复杂度小的优势。展开更多
文摘针对无线体域网(wireless body area network,WBAN)异常数据检测方法忽视人体异常数据的连续性,缺乏异常数据集检测等问题,提出一种基于Hampel滤波器和DBSCAN分层的WBAN异常数据检测方法。根据时间相关性利用Hampel滤波器检测异常数据点,保证数据的连续性,使用改进的基于滑动时间窗的DBSCAN算法,检测异常数据集。实验结果表明,所提方法和其它方法相比,实现了分层的异常数据检测,在保证检测精度的同时准确标注出了异常数据集,具有空间复杂度小的优势。