A new modified blend ultrafiltration(UF)membrane with good hydrophilicity,high porosity and excellent anti-fouling performance was developed by using carboxylic multi-walled carbon nanotube(CMWCNT)as casting solution ...A new modified blend ultrafiltration(UF)membrane with good hydrophilicity,high porosity and excellent anti-fouling performance was developed by using carboxylic multi-walled carbon nanotube(CMWCNT)as casting solution additive.Furthermore,a composite nanofiltration(NF)membrane with large water flux and good retention rate was fabricated by using the PVDF/CMWCNT blend UF membrane as the substrate,and polyvinyl alcohol(PVA),β-cyclodextrin(β-CD)and polyethylenimine(PEI)as the coating solution.The results show that with the appropriate addition of CMWCNT in the casting solution,the surface roughness,porosity and recovery rate of the PVDF/CMWCNT blend UF membrane is obviously increased.The water flux of blend UF membrane is significantly improved when the CMWCNT content increases from 0 wt%to 0.2 wt%.The water flux of blend UF membrane with 0.2 wt%CMWCNT is 162.7 L/(m^(2)·h),which is 44.3%higher than that of the pure PVDF membrane.Whenβ-CD content is 0.8 wt%,the retention rate of Congo red by PVDF/CMWCNT/β-CD composite NF membrane reaches 98.7%,which is 28.3%higher than that of single PVA/PEI modified membrane.This research will provide a new idea and simple method for developing novel high-performance composite NF membranes.展开更多
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim...Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.展开更多
Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltr...Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.展开更多
Polymers of intrinsic microporosity(PIMs)have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades,owing to their highly permeable porous struct...Polymers of intrinsic microporosity(PIMs)have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades,owing to their highly permeable porous structures.However,challenges regarding its relatively low selectivity,physical aging,and plasticisation impede relevant industrial adoptions for gas separation.To address these issues,several strategies including chain modification,post-modification,blending with other polymers,and the addition of fillers,have been developed and explored.PIM-1 is the most investigated PIMs,and hence here we review the stateof-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis.Additionally,the development of PIM-1-based thin film composite membranes is commented as well,shedding light on their potential in industrial gas separation.We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.展开更多
基金Funded by the National Natural Science Foundation of China(No.52278453)Basic Scientific Research Project of Colleges and Universities of Liaoning Provincial Department of Education(Nos.LJ212410153013,LJKQZ2021060)。
文摘A new modified blend ultrafiltration(UF)membrane with good hydrophilicity,high porosity and excellent anti-fouling performance was developed by using carboxylic multi-walled carbon nanotube(CMWCNT)as casting solution additive.Furthermore,a composite nanofiltration(NF)membrane with large water flux and good retention rate was fabricated by using the PVDF/CMWCNT blend UF membrane as the substrate,and polyvinyl alcohol(PVA),β-cyclodextrin(β-CD)and polyethylenimine(PEI)as the coating solution.The results show that with the appropriate addition of CMWCNT in the casting solution,the surface roughness,porosity and recovery rate of the PVDF/CMWCNT blend UF membrane is obviously increased.The water flux of blend UF membrane is significantly improved when the CMWCNT content increases from 0 wt%to 0.2 wt%.The water flux of blend UF membrane with 0.2 wt%CMWCNT is 162.7 L/(m^(2)·h),which is 44.3%higher than that of the pure PVDF membrane.Whenβ-CD content is 0.8 wt%,the retention rate of Congo red by PVDF/CMWCNT/β-CD composite NF membrane reaches 98.7%,which is 28.3%higher than that of single PVA/PEI modified membrane.This research will provide a new idea and simple method for developing novel high-performance composite NF membranes.
基金financial support from the National Natural Science Foundation of China(Nos.22108258 and 52003251)Program for Science&Technology Innovation Talents in Universities of Henan Province(24HASTIT004)+1 种基金Outstanding Youth Fund of Henan Scientific Committee(222300420085)Science and Technology Joint Project of Henan Province(222301420041)。
文摘Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials.
基金supported by the National Natural Science Foundation of China(Grant No.2230081973)Shanghai Pilot Program for Basic Research(22TQ1400100-4).
文摘Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications.
基金funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 872102the China Scholarship Council(CSC,file no.202006240076)-University of Manchester joint studentship for supporting the PhD researchthe special innovation project fund from the Institute of Wenzhou,Zhejiang University(No.XMGL-KJZX-202204)。
文摘Polymers of intrinsic microporosity(PIMs)have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades,owing to their highly permeable porous structures.However,challenges regarding its relatively low selectivity,physical aging,and plasticisation impede relevant industrial adoptions for gas separation.To address these issues,several strategies including chain modification,post-modification,blending with other polymers,and the addition of fillers,have been developed and explored.PIM-1 is the most investigated PIMs,and hence here we review the stateof-the-arts of the modification strategies of PIM-1 critically and discuss the progress achieved for addressing the aforementioned challenges via meta-analysis.Additionally,the development of PIM-1-based thin film composite membranes is commented as well,shedding light on their potential in industrial gas separation.We hope that the review can be a timely snapshot of the relevant state-of-the-arts of PIMs guiding future design and optimisation of PIMs-based membranes for enhanced performance towards a higher technology readiness level for practical applications.