为研究插入道岔施工(Turnout Inserting Construction,TIC)对既有高速道岔锁定轨温(StressFree Rail Temperature of Existing high-speed Turnout,SFRTET)的影响,提出基于双向应变法的锁定轨温变化测试方案,推导不同因素影响下的锁定...为研究插入道岔施工(Turnout Inserting Construction,TIC)对既有高速道岔锁定轨温(StressFree Rail Temperature of Existing high-speed Turnout,SFRTET)的影响,提出基于双向应变法的锁定轨温变化测试方案,推导不同因素影响下的锁定轨温变化测量原理,确定监测数据的处理方法,并开展道岔锁定轨温变化现场试验研究.研究结果表明:基于锁定轨温变化监测方法确定的传感器安装时轨温与实测数据差异仅1.4%,验证了测试方案的合理性和数据处理方法的正确性;高速道岔的锁定轨温会受插入道岔各工序施工的影响,其在轨道结构拆除、轨道结构施工、道岔形位精调和工电联调3个工序中表现出显著的动态变化特征,即锁定轨温经历多次循环变化才达到稳定状态;既有高速道岔锁定轨温受侧股钢轨重新焊接施工影响最为显著,尤其是靠近焊接位置的侧股钢轨,其锁定轨温变化达12.87℃,建议侧股钢轨重新焊接工序尽可能选择在轨温接近既有道岔原锁定轨温时开展.展开更多
The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital...The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.展开更多
文摘为研究插入道岔施工(Turnout Inserting Construction,TIC)对既有高速道岔锁定轨温(StressFree Rail Temperature of Existing high-speed Turnout,SFRTET)的影响,提出基于双向应变法的锁定轨温变化测试方案,推导不同因素影响下的锁定轨温变化测量原理,确定监测数据的处理方法,并开展道岔锁定轨温变化现场试验研究.研究结果表明:基于锁定轨温变化监测方法确定的传感器安装时轨温与实测数据差异仅1.4%,验证了测试方案的合理性和数据处理方法的正确性;高速道岔的锁定轨温会受插入道岔各工序施工的影响,其在轨道结构拆除、轨道结构施工、道岔形位精调和工电联调3个工序中表现出显著的动态变化特征,即锁定轨温经历多次循环变化才达到稳定状态;既有高速道岔锁定轨温受侧股钢轨重新焊接施工影响最为显著,尤其是靠近焊接位置的侧股钢轨,其锁定轨温变化达12.87℃,建议侧股钢轨重新焊接工序尽可能选择在轨温接近既有道岔原锁定轨温时开展.
基金This research was supported by the European Union’s‘Shift2Rail’through No.826255 for the project IN2TRACK2:Research into enhanced track and switch and crossing system 2
文摘The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.