目的利用自适应合成抽样(adaptive synthetic sampling,ADASYN)与类别逆比例加权法处理类别不平衡数据,结合分类器构建模型对阿尔茨海默病(alzheimer′s disease,AD)患者疾病进程进行分类预测。方法数据源自阿尔茨海默病神经影像学计划(...目的利用自适应合成抽样(adaptive synthetic sampling,ADASYN)与类别逆比例加权法处理类别不平衡数据,结合分类器构建模型对阿尔茨海默病(alzheimer′s disease,AD)患者疾病进程进行分类预测。方法数据源自阿尔茨海默病神经影像学计划(Alzheimer′s disease neuroimaging initiative,ADNI),经随机森林填补缺失值,弹性网络筛选特征子集后,利用ADASYN与类别逆比例加权法处理类别不平衡数据。分别结合随机森林(random forest,RF)、支持向量机(support vector machine,SVM)构建四种模型:ADASYN-RF、ADASYN-SVM、加权随机森林(weighted random forest,WRF)、加权支持向量机(weighted support vector machine,WSVM),与RF、SVM比较分类性能。模型评价指标为宏观平均精确率(macro-average of precision,macro-P)、宏观平均召回率(macro-average of recall,macro-R)、宏观平均F1值(macro-average of F1-score,macro-F1)、准确率(accuracy,ACC)、Kappa值和AUC(area under the ROC curve)。结果ADASYN-RF的分类性能最优(Kappa值为0.938,AUC为0.980),ADASYN-SVM次之。利用ADASYN-RF预测得到的重要分类特征分别为CDRSB、LDELTOTAL、MMSE,在临床上均可得到证实。结论ADASYN与类别逆比例加权法都能辅助提升分类器性能,但ADASYN算法更优。展开更多
目的 采用结合环论的粒子群优化算法(hybridization of ring theory-based evolutionary algorithm and particle swarm optimization, RTPSO)对数据进行均衡化处理,以构建高性能冠心病合并慢性心衰预后模型。方法 分别用SMOTE算法、RT...目的 采用结合环论的粒子群优化算法(hybridization of ring theory-based evolutionary algorithm and particle swarm optimization, RTPSO)对数据进行均衡化处理,以构建高性能冠心病合并慢性心衰预后模型。方法 分别用SMOTE算法、RTPSO算法对数据进行均衡化处理,在均衡化数据集上构建logistic回归、随机森林、支持向量机模型。结果 本研究共纳入2229例冠心病合并慢性心衰患者,依据筛选出的BMI、射血分数、N端前脑钠肽等22个变量构建模型。用灵敏度、特异度、准确率、F-measure和AUC值评价模型性能,其中RF、SVM、logistic回归、RF-RTPSO、SVM-RTPSO、Logistic-RTPSO灵敏度的中位数分别为0.0172、0.0773、0.0776、0.7568、0.7640、0.7838;F-measure的中位数分别为0.0338、0.1143、0.1283、0.3412、0.3505、0.4545;AUC的中位数分别为0.5086、0.5264、0.5313、0.8016、0.7785、0.7985。结论 RTPSO算法可以从多数类样本中选择有代表性的少数样本,从而达到数据均衡化,使分类模型具备更高的预测性能,指导临床医生发现高危患者,尽早预防不良事件的发生。展开更多
目的建立自回归移动平均模型(autoregressive integrated moving average model,ARIMA)并对2022年菏泽市肺结核发病数进行预测。方法以2010-2020年菏泽市肺结核病人月登记发病数为基础建立最优ARIMA模型,预测2021年发病数并与实际值比较...目的建立自回归移动平均模型(autoregressive integrated moving average model,ARIMA)并对2022年菏泽市肺结核发病数进行预测。方法以2010-2020年菏泽市肺结核病人月登记发病数为基础建立最优ARIMA模型,预测2021年发病数并与实际值比较,以此评估模型的预测效果,并对2022年发病趋势进行预测。结果菏泽市肺结核发病数呈现逐年下降趋势,并存在一定的季节变化,最优模型为ARIMA(0,1,1)(1,1,1)12,2021年拟合结果显示其总的预测误差率为2.59%,平均绝对百分比误差为17.76%,预测2022发病数为1644例,继续呈下降趋势,疫情态势平稳。结论ARIMA(0,1,1)(1,1,1)12模型能较好地预测菏泽市肺结核的短期发病趋势,但应根据监测数据变化加以修正,以提高预测精度。展开更多
文摘目的利用自适应合成抽样(adaptive synthetic sampling,ADASYN)与类别逆比例加权法处理类别不平衡数据,结合分类器构建模型对阿尔茨海默病(alzheimer′s disease,AD)患者疾病进程进行分类预测。方法数据源自阿尔茨海默病神经影像学计划(Alzheimer′s disease neuroimaging initiative,ADNI),经随机森林填补缺失值,弹性网络筛选特征子集后,利用ADASYN与类别逆比例加权法处理类别不平衡数据。分别结合随机森林(random forest,RF)、支持向量机(support vector machine,SVM)构建四种模型:ADASYN-RF、ADASYN-SVM、加权随机森林(weighted random forest,WRF)、加权支持向量机(weighted support vector machine,WSVM),与RF、SVM比较分类性能。模型评价指标为宏观平均精确率(macro-average of precision,macro-P)、宏观平均召回率(macro-average of recall,macro-R)、宏观平均F1值(macro-average of F1-score,macro-F1)、准确率(accuracy,ACC)、Kappa值和AUC(area under the ROC curve)。结果ADASYN-RF的分类性能最优(Kappa值为0.938,AUC为0.980),ADASYN-SVM次之。利用ADASYN-RF预测得到的重要分类特征分别为CDRSB、LDELTOTAL、MMSE,在临床上均可得到证实。结论ADASYN与类别逆比例加权法都能辅助提升分类器性能,但ADASYN算法更优。
文摘目的 采用结合环论的粒子群优化算法(hybridization of ring theory-based evolutionary algorithm and particle swarm optimization, RTPSO)对数据进行均衡化处理,以构建高性能冠心病合并慢性心衰预后模型。方法 分别用SMOTE算法、RTPSO算法对数据进行均衡化处理,在均衡化数据集上构建logistic回归、随机森林、支持向量机模型。结果 本研究共纳入2229例冠心病合并慢性心衰患者,依据筛选出的BMI、射血分数、N端前脑钠肽等22个变量构建模型。用灵敏度、特异度、准确率、F-measure和AUC值评价模型性能,其中RF、SVM、logistic回归、RF-RTPSO、SVM-RTPSO、Logistic-RTPSO灵敏度的中位数分别为0.0172、0.0773、0.0776、0.7568、0.7640、0.7838;F-measure的中位数分别为0.0338、0.1143、0.1283、0.3412、0.3505、0.4545;AUC的中位数分别为0.5086、0.5264、0.5313、0.8016、0.7785、0.7985。结论 RTPSO算法可以从多数类样本中选择有代表性的少数样本,从而达到数据均衡化,使分类模型具备更高的预测性能,指导临床医生发现高危患者,尽早预防不良事件的发生。
文摘目的建立自回归移动平均模型(autoregressive integrated moving average model,ARIMA)并对2022年菏泽市肺结核发病数进行预测。方法以2010-2020年菏泽市肺结核病人月登记发病数为基础建立最优ARIMA模型,预测2021年发病数并与实际值比较,以此评估模型的预测效果,并对2022年发病趋势进行预测。结果菏泽市肺结核发病数呈现逐年下降趋势,并存在一定的季节变化,最优模型为ARIMA(0,1,1)(1,1,1)12,2021年拟合结果显示其总的预测误差率为2.59%,平均绝对百分比误差为17.76%,预测2022发病数为1644例,继续呈下降趋势,疫情态势平稳。结论ARIMA(0,1,1)(1,1,1)12模型能较好地预测菏泽市肺结核的短期发病趋势,但应根据监测数据变化加以修正,以提高预测精度。