The present study aims to the development of Out of Autoclave (OoA) Carbon Fiber Reinforced Polymers (CFRPs) with increased interlaminar fracture toughness by using MWCNTs. The introduction of MWCNTs into the structur...The present study aims to the development of Out of Autoclave (OoA) Carbon Fiber Reinforced Polymers (CFRPs) with increased interlaminar fracture toughness by using MWCNTs. The introduction of MWCNTs into the structure of CFRPs has been succeeded by using carbon nanotube-enriched sizing agent for the pretreatment of the fiber preform using an in-house developed methodology that can be easily scaled up. The positive effect of the proposed methodology on the interlaminar fracture toughness of the CFRP laminate was assessed by the increase of Mode I and Mode II interlaminar fracture toughness of the composites. Different wt% MWCNTs concentrations were used (namely 0.5%, 1%, 1.5% and 2.5%). It was found that the nanomodified composites exhibit a significant increase of the interlaminar critical strain energy release rate GIC and GIIC of the order of 103% and 62% respectively, in the case of 1.5 wt% MWCNTs weight content. Scanning Electron Microscopy (SEM) of the fracture surfaces of CFRP samples revealed the contribution and the associated synergistic mechanisms of MWCNTs to the increase of the crack propagation resistance in the case of nano-modified CFRPs compared to the reference material.展开更多
Literature has demonstrated that Carbon Nanotubes(CNTs) can greatly enhance the electrical conductivity and matrix-dominated mechanical properties of fibrous composites. However, electrothermal coupling effect of CNTs...Literature has demonstrated that Carbon Nanotubes(CNTs) can greatly enhance the electrical conductivity and matrix-dominated mechanical properties of fibrous composites. However, electrothermal coupling effect of CNTs on Carbon Fiber Reinforced Plastics(CFRPs) has scarcely been considered. This work prepared and introduced thin and porous CNT webs to the surface or/and interface of a CFRP to enhance its electrothermal properties. The results show that CNT webs can enhance the transverse electrical conductivities of the CFRP by 231%-519% in a current range of 50–150mA, when compared to the base-CFRP. Also, the surface temperature of CNT webs decorated CFRP can be improved by 20.5–32.3℃ within 3min showing a self-heating rate of 6.8–10.8℃/min just with an applied voltage of 20–30V, increased by 152%-177% when compared to the base-CFRP(2.7–3.9℃/min). Also, deicing can be finished within 4–10min with a voltage of 18V and an input power of 246W/m^(2). Moreover, the electrothermal processes nearly have no negative effect on the mechanical properties of the CFRP. The relatively low input power and short response time for deicing make the CNT webs decorated CFRP may be a potential new generation for aeronautical deicing structure.展开更多
文摘The present study aims to the development of Out of Autoclave (OoA) Carbon Fiber Reinforced Polymers (CFRPs) with increased interlaminar fracture toughness by using MWCNTs. The introduction of MWCNTs into the structure of CFRPs has been succeeded by using carbon nanotube-enriched sizing agent for the pretreatment of the fiber preform using an in-house developed methodology that can be easily scaled up. The positive effect of the proposed methodology on the interlaminar fracture toughness of the CFRP laminate was assessed by the increase of Mode I and Mode II interlaminar fracture toughness of the composites. Different wt% MWCNTs concentrations were used (namely 0.5%, 1%, 1.5% and 2.5%). It was found that the nanomodified composites exhibit a significant increase of the interlaminar critical strain energy release rate GIC and GIIC of the order of 103% and 62% respectively, in the case of 1.5 wt% MWCNTs weight content. Scanning Electron Microscopy (SEM) of the fracture surfaces of CFRP samples revealed the contribution and the associated synergistic mechanisms of MWCNTs to the increase of the crack propagation resistance in the case of nano-modified CFRPs compared to the reference material.
基金supported by the National Natural Science Foundation of China (No. 11772233)。
文摘Literature has demonstrated that Carbon Nanotubes(CNTs) can greatly enhance the electrical conductivity and matrix-dominated mechanical properties of fibrous composites. However, electrothermal coupling effect of CNTs on Carbon Fiber Reinforced Plastics(CFRPs) has scarcely been considered. This work prepared and introduced thin and porous CNT webs to the surface or/and interface of a CFRP to enhance its electrothermal properties. The results show that CNT webs can enhance the transverse electrical conductivities of the CFRP by 231%-519% in a current range of 50–150mA, when compared to the base-CFRP. Also, the surface temperature of CNT webs decorated CFRP can be improved by 20.5–32.3℃ within 3min showing a self-heating rate of 6.8–10.8℃/min just with an applied voltage of 20–30V, increased by 152%-177% when compared to the base-CFRP(2.7–3.9℃/min). Also, deicing can be finished within 4–10min with a voltage of 18V and an input power of 246W/m^(2). Moreover, the electrothermal processes nearly have no negative effect on the mechanical properties of the CFRP. The relatively low input power and short response time for deicing make the CNT webs decorated CFRP may be a potential new generation for aeronautical deicing structure.