期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Expansion of the Decoupled Discreet-Time Jacobian Eigenvalue Approximation for Model-Free Analysis of PMU Data
1
作者 Sean D. Kantra Elham B. Makram 《Journal of Power and Energy Engineering》 2017年第6期14-35,共22页
This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quick... This paper proposes an extension of the algorithm in [1], as well as utilization of the wavelet transform in event detection, including High Impedance Fault (HIF). Techniques to analyze the abundant data of PMUs quickly and effectively are paramount to increasing response time to events and unstable parameters. With the amount of data PMUs output, unstable parameters, tie line oscillations, and HIFs are often overlooked in the bulk of the data. This paper explores model-free techniques to attain stability information and determine events in real-time. When full system connectivity is unknown, many traditional methods requiring other bus measurements can be impossible or computationally extensive to apply. The traditional method of interest is analyzing the power flow Jacobian for singularities and system weak points, attained by applying singular value decomposition. This paper further develops upon the approach in [1] to expand the Discrete-Time Jacobian Eigenvalue Approximation (DDJEA), giving values to significant off-diagonal terms while establishing a generalized connectivity between correlated buses. Statistical linear models are applied over large data sets to prove significance to each term. Then the off diagonal terms are given time-varying weights to account for changes in topology or sensitivity to events using a reduced system model. The results of this novel method are compared to the present errors of the previous publication in order to quantify the degree of improvement that this novel method imposes. The effective bus eigenvalues are briefly compared to Prony analysis to check similarities. An additional application for biorthogonal wavelets is also introduced to detect event types, including the HIF, for PMU data. 展开更多
关键词 SYNCHROPHASOR PMU openPDC Power Flow JACOBIAN Decoupled Discrete-Time JACOBIAN Approximation (ddjea) SINGULAR Value Decomposition (SVD) High Impedance Fault (HIF) Discrete Wavelet Transform (DWT)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部