Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implicatio...Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.展开更多
Mountain ecosystems play an essential role in supporting regional sustainable development and improving local ecological environments. However, economic development in mountainous areas has long been lagging, and mult...Mountain ecosystems play an essential role in supporting regional sustainable development and improving local ecological environments. However, economic development in mountainous areas has long been lagging, and multiple conflicts related to resource assurance, ecological protection, and economic development have emerged. An accurate grasp of the current status and evolutionary trends of mountain ecosystems is essential to enhance the overall benefits of ecosystem services and maintain regional ecological security. Based on the In VEST(Integrated Valuation of Ecosystem Services and Trade-offs) model, this study analyzed the spatiotemporal evolution patterns and the trade-offs and synergies among ecosystem services(ES) in the Dabie Mountains Area(DMA) of eastern China. The Markov-PLUS(Patch-generating Land Use Simulation) model was used to conduct a multi-scenario simulation of the area's future development. Water yield(WY) and soil conservation(SC) had overall increasing trends during 2000-2020, carbon storage(CS)decreased overall but slowed with time, and habitat quality(HQ) increased and then decreased. The ecological protection scenario is the best scenario for improving ES in the DMA by 2030;compared to 2020, the total WY would decrease by 3.77 × 10^(8) m^(3), SC would increase by 0.65 × 10^(6) t, CS would increase by 1.33 × 10^(6) t, and HQ would increase by 0.06%. The comprehensive development scenario is the second-most effective scenario for ecological improvement, while the natural development scenario did not have a significant effect. However, as the comprehensive development scenario considers both environmental protection and economic development, which are both vital for the sustainable development of the mountainous areas, this scenario is considered the most suitable path for future development. There are trade-offs between WY, CS, and HQ, while there are synergies between SC, CS, and HQ. Spatially, the DMA's central core district is the main strong synergistic area, the marginal zone is the weak synergistic area, and trade-offs are mainly distributed in the transition zone.展开更多
The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors ...The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.展开更多
Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,i...Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.展开更多
Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resul...Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resulting in biodiversity and habitat loss,environmental pollution,and the depletion of natural resources.In response to these environmental challenges,the Sustainable Development Goals(SDGs)were proposed.Given the pressing need to address these issues,understanding the changes in ESs under the SDGs is crucial for formulating specific ecological strategies.In this study,we first analyzed land use and cover change in the Zhejiang coasts of China during 2000–2020.Then,we investigated the spatiotemporal configuration of ESs by integrating carbon storage(CS),soil retention(SR),habitat quality(HQ)and water yield(WY)using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.The driving mechanisms of ESs,which varied by space and time,were also explored using the Geo-detector method.The results revealed that,over the past two decades:1)the Zhejiang coasts have experienced a significant increase of 2783.72 km^(2) in built-up land areas and a continuous decrease in farmland areas due to rapid urbanization;2)owing to higher precipitation,extensive vegetation cover,and reduced anthropogenic disturbances,forests emerge as a crucial land use type for maintaining ecosystem services such as HQ,CS,WY,and SR;3)ESs have generally declined across the entire Zhejiang coasts,with a significant decrease observed in the northern areas and an increase in the southern areas spatially;4)the expansion of built-up land areas emerged as the primary factor affecting ecosystem services,while the vegetation factor has been increasingly significant and is expected to become predominant in the near future.Our study provides insights of understanding of ecosystem service theory and emphasizing the importance of preserving biodiversity for long-term sustainable development,and valuable scientific references to support the ecological management decision-making for local governments.展开更多
The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the w...The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.展开更多
Karst environmental issues have become one of the hot spots in contemporary international geological research. The same problem of water shortage is one of the hot spots of global concern. The peak-cluster depression ...Karst environmental issues have become one of the hot spots in contemporary international geological research. The same problem of water shortage is one of the hot spots of global concern. The peak-cluster depression basins in southwest of Guangxi is an important water connotation and ecological barrier areas in the Pearl River Basin of China. Thus, studying the spatial and temporal variations and the influencing factors of its water yield services is critical to achieve the sustainable development of water resources and ecological environmental protection in this region. As such, this paper uses the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model to assess the spatial and temporal variabilities of water yield services and its trends in the peak-cluster depression basins in southwest of Guangxi from 2000 to 2020. This work also integrates precipitation(Pre), reference evapotranspiration(ET), temperature(Tem), digital elevation model(DEM), slope, normalized difference vegetation index(NDVI), land use/land cover(LULC) and soil type to reveal the main factors that influence water yield services with the help of Geodetector. Results show that: 1) in time scale,the total annual water yield in the study area show a fluctuating and increasing trend from 2000 to 2020, with a growth rate of 7.3753 × 10^(8)m^(3)/yr, and its multi-year average water yield was 538.07 mm;2) in spatial pattern, with high yield areas mainly distributed in the south of the study area(mainly including Shangsi County, Pingxiang City, Ningming County, Longzhou County and Jingxi County), and low yield areas mainly distributed in Baise City and Nanning City;3) the dominant factor of water yield within karst and non-karst landforms is not necessarily controlled by precipitation, and the explanation degree of DEM factors in karst areas is significantly higher than that in non-karst areas;4) amongst the climatic factors, Pre, ET and Tem are dominant in the spatial pattern of region water yield capacity. among which Pre has the highest explanatory power for the spatial heterogeneity of annual water production, with q values above0.8, and each driver showed a significant interaction on the spatial distribution of water yield, with Pre exhibiting the strongest interaction with LULC.展开更多
The water conservation(WC) function of ecosystems is related to regional ecological security and the sustainable development of water resources, and the assessment of WC and its influencing factors is crucial for ecol...The water conservation(WC) function of ecosystems is related to regional ecological security and the sustainable development of water resources, and the assessment of WC and its influencing factors is crucial for ecological and water resource management.The Tumen River Basin(TRB) is located in the core of the Northeast Asian ecological network and has been experiencing severe ecological crises and water shortages in recent years due to climate change and human activities. However, these crises have not been fully revealed to the extent that corresponding scientific measures are lacking. This study analyzed the spatial and temporal evolution characteristics and drivers of WC in the TRB from 1990 to 2019 based on the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model. The results showed that: 1) under the combined effect of nature and socioeconomics, the WC depth of the TRB has slowly increased at a rate of 0.11 mm/yr in the past 30 years, with an average WC depth of 36.14 mm. 2) The main driving factor of the spatial variation in WC is precipitation, there is a significant interaction between precipitation and velocity, the interaction between each factor is higher than the contribution of a single factor, and the interactions between factors all have nonlinear enhancement and two-factor enhancement. 3) Among the seven counties and municipalities in the study area, the southern part of Helong City and the southeastern part of Longjing City are extremely important areas for WC(> 75 mm), and they should be regarded as regional water resources and ecological priority protection areas. It is foreseen that under extreme climate conditions in the future, the WC of the watershed is under great potential threat, and protection measures such as afforestation and forestation should begin immediately. Furthermore, the great interannual fluctuations in WC depth may place more stringent requirements on the choice of time scales in the ecosystem service assessment process.展开更多
探讨土地利用变化所引发的水质净化演变,对于保护和改善水质,实现可持续发展具有重要意义。以“两湖一库”流域为例,运用PLUS(patch-level land use simulation)模型和InVEST(integrated valuation of ecosystem services and tradeoffs...探讨土地利用变化所引发的水质净化演变,对于保护和改善水质,实现可持续发展具有重要意义。以“两湖一库”流域为例,运用PLUS(patch-level land use simulation)模型和InVEST(integrated valuation of ecosystem services and tradeoffs)模型生态系统服务水质净化模块,基于2000年、2010年和2020年土地利用数据,模拟流域在未来自然发展情景和生态保护情景下的用地类型时空格局变化以及水质净化特征。定量揭示土地利用变化与水质净化功能的响应关系。结果表明:“两湖一库”流域土地类型以耕地为主,2030年在自然发展情景下耕地、林地、草地面积呈下降趋势,建设用地呈上升趋势,生态保护情景可有效保护流域耕地、林地等空间分布和面积;“两湖一库”流域TN、TP输出量以低强度输出为主,2000—2020年TN输出量先增加后减少,TP输出量逐年增加,水质净化能力呈稳中变好的趋势;2030年自然发展情境下TN输出量持续减少,TP输出量呈向上浮动,生态保护情景下TN、TP输出量较自然发展情景下减少,生态保护情景可以增加水质净化能力。生态用地类型可以有效截留N、P进入水体,生态保护情景下有效降低生态用地类型的变化速度,减少TN、TP的输出量,“两湖一库”流域未来规划中应增加生态用地的占比,增加土地类型对TN、TP的截留能力。展开更多
Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this...Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.展开更多
Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding s...Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.展开更多
研究以渤海湾为生态系统服务需求区,以渤海湾滨海地区为生态系统服务供给区,从生态系统服务供需的视角,以水资源、水环境、水生态为问题与目标维度构建了渤海湾滨海地区生态安全屏障功能评价体系。根据渤海湾生态问题,截污净化、产水量...研究以渤海湾为生态系统服务需求区,以渤海湾滨海地区为生态系统服务供给区,从生态系统服务供需的视角,以水资源、水环境、水生态为问题与目标维度构建了渤海湾滨海地区生态安全屏障功能评价体系。根据渤海湾生态问题,截污净化、产水量和生境质量3类指标被筛选为生态安全屏障功能的关键指标,并分别使用生态系统服务和权衡的综合评估模型(Integrated Valuation of Ecosystem Services and Trade-offs,InVEST)模型中的营养物迁移模型、产水量模型和生境质量模型进行评价。此外,对2000—2020年渤海湾滨海地区土地利用格局和截污净化、产水量、生境质量3类生态安全屏障功能指标的时空变化进行评价,并分析了生态安全屏障功能时空演变的驱动因素。研究的主要结果如下:(1)在20 a间渤海湾滨海地区,耕地、未利用地面积减少而建设用地和湿地面积增加,氮磷截留率和产水量增加,但生境质量下降。(2)渤海湾滨海地区综合生态安全屏障功能供给良好,但近年来呈下降趋势。(3)人类活动引起的土地利用变化是影响渤海湾滨海地区生态安全屏障功能时空演变的主要驱动力。研究对渤海湾滨海地区生态安全屏障功能评价方法及结果不仅可指导本区域生态建设,同时对其他区域的生态安全屏障功能评价具有借鉴意义。展开更多
水资源短缺问题已经严重制约人类的生产生活,研究不同土地利用条件下的产水量和水源涵养功能,可科学指导区域水资源的利用和管理。利用生态系统服务和权衡的综合评估模型(integrated valuation of ecosystem services and tradeoffs,InV...水资源短缺问题已经严重制约人类的生产生活,研究不同土地利用条件下的产水量和水源涵养功能,可科学指导区域水资源的利用和管理。利用生态系统服务和权衡的综合评估模型(integrated valuation of ecosystem services and tradeoffs,InVEST)模型分析了杨溪河流域1995年、2005年和2015年不同土地利用情况下的水源涵养量和水源涵养服务价值。结果表明:杨溪河流域在1995年的水源涵养量大于2005年和2015年,2005年和2015年的水源涵养量较为接近;杨溪河流域1995年、2005年和2015年的产水量均显示出上游和下游有较高的产水量;杨溪河流域在1995年、2005年和2015年的水源涵养服务价值分别为23.56亿元/a、21.44亿元/a和21.55亿元/a。人类活动将影响杨溪河流域水源涵养功能,在水资源开发利用方面,要协调好经济、环境和资源等各方的关系,为杨溪河流域等中国南方地区中小流域的开发利用和保护提供参考依据。展开更多
The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin,China through afforestation and grassland restoration over the past two decades.However,a comprehensive un...The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin,China through afforestation and grassland restoration over the past two decades.However,a comprehensive understanding of the spatiotemporal evolution of water conservation function and its driving factors remains incomplete in this basin.In this study,we utilized the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to examine the spatiotemporal evolution of water conservation function in the Huangshui River Basin from 2000 to 2020.Additionally,we employed the random forest model,Pearson correlation analysis,and geographical detector(Geodetector)techniques to investigate the primary factors and factor interactions affecting the spatial differentiation of water conservation function.The findings revealed several key points.First,the high-latitude northern region of the study area experienced a significant increase in water conservation over the 21-a period.Second,the Grain for Green project has played a substantial role in improving water conservation function.Third,precipitation,plant available water content(PAWC),grassland,gross domestic product(GDP),and forest land were primary factors influencing the water conservation function.Finally,the spatial differentiation of water conservation function was determined by the interactions among geographical conditions,climatic factors,vegetation biophysical factors,and socio-economic factors.The findings have significant implications for advancing ecological protection and restoration initiatives,enhancing regional water supply capabilities,and safeguarding ecosystem health and stability in the Huangshui River Basin.展开更多
生境质量是关系人类福祉和实现可持续发展的重要基础,对区域生态保护和土地资源可持续利用具有重大意义。以渭河流域为研究对象,基于2000、2010年和2020年的土地利用数据,应用斑块生成土地利用变化模拟(Patch-generating land use simul...生境质量是关系人类福祉和实现可持续发展的重要基础,对区域生态保护和土地资源可持续利用具有重大意义。以渭河流域为研究对象,基于2000、2010年和2020年的土地利用数据,应用斑块生成土地利用变化模拟(Patch-generating land use simulation,PLUS)模型、生态系统服务和权衡的综合评估(Integrated valuation of ecosystem services and trade-offs,InVEST)模型预测并评价了土地利用与生境质量时空变化特征。结果表明:(1)2000—2020年渭河流域建设用地和草地面积逐年增加,林地面积略微增长,耕地面积持续减少;2020—2050年土地利用变化趋势同2000—2020年基本一致但剧烈程度显著下降,建设用地扩张趋势减缓,耕地减少幅度下降,草地面积占比超过耕地跃居流域第一。(2)2000—2020年流域内生境质量两极分化趋势明显,低生境质量和高生境质量区域面积有所增加,中等生境质量的面积减少,整体生境质量水平呈上升趋势;2020—2050年生境质量水平继续保持逐年上升趋势但增幅放缓,生境质量变化强度下降,低生境质量区域面积逐渐减少,中等生境质量面积保持稳定,高生境质量面积有所增长。研究结果可为渭河流域土地资源可持续利用和高质量发展提供相应科学依据和决策参考。展开更多
Ecosystem services are substantial elements for human society. The central challenge to meet the human needs from ecosystems while sustain the Earth's life support systems makes it urgent to enhance efficient natu...Ecosystem services are substantial elements for human society. The central challenge to meet the human needs from ecosystems while sustain the Earth's life support systems makes it urgent to enhance efficient natural resource management for sustainable ecological and socioeconomic development. Trade-off analysis of ecosystem services can help to identify optimal decision points to balance the costs and benefits of the diverse human uses of ecosystems. In this sense, the aim of this paper is to provide key insights into ecosystem services trade-off analysis at different scales from a land use perspective, by comprehensively reviewing the trade-offs analysis tools and approaches that addressed in ecology, economics and other fields. The review will significantly contribute to future research on trade-off analysis to avoid inferior management options and offer a win-win solution based on comprehensive and efficient planning for interacting multiple ecosystem services.展开更多
基金supported by the Innovation Capability Support Program of Shaanxi Province,China(2023-CX-RKX-102)the Key Research and Development Program of Shaanxi Province,China(2022FP-34)+1 种基金the Open Foundation of the Key Laboratory of Natural Resource Coupling Process and Effects(2023KFKTB008)the Open Fund of Shaanxi Key Laboratory of Land Consolidation,China(300102352502).
文摘Studying the spatiotemporal variations in ecosystem services and their interrelationships on the Loess Plateau against the background of the gully control and land consolidation(GCLC)project has significant implications for ecological protection and quality development of the Yellow River Basin.Therefore,in this study,we took Yan'an City,Shaanxi Province of China,as the study area,selected four typical ecosystem services,including soil conservation service,water yield service,carbon storage service,and habitat quality service,and quantitatively evaluated the spatiotemporal variation characteristics and trade-offs and synergies of ecosystem services from 2010 to 2018 using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.We also analysed the relationship between the GCLC project and regional ecosystem service changes in various regions(including 1 city,2 districts,and 10 counties)of Yan'an City and proposed a coordinated development strategy between the GCLC project and the ecological environment.The results showed that,from 2010 to 2018,soil conservation service decreased by 7.76%,while the other three ecosystem services changed relatively little,with water yield service increasing by 0.56% and carbon storage service and habitat quality service decreasing by 0.16% and 0.14%,respectively.The ecological environment of Yan'an City developed in a balanced way between 2010 and 2018,and the four ecosystem services showed synergistic relationships,among which the synergistic relationships between soil conservation service and water yield service and between carbon storage service and habitat quality service were significant.The GCLC project had a negative impact on the ecosystem services of Yan'an City,and the impact on carbon storage service was more significant.This study provides a theoretical basis for the scientific evaluation of the ecological benefits of the GCLC project and the realization of a win-win situation between food security and ecological security.
基金Under the auspices of National Natural Science Foundation of China (No. U2102209)。
文摘Mountain ecosystems play an essential role in supporting regional sustainable development and improving local ecological environments. However, economic development in mountainous areas has long been lagging, and multiple conflicts related to resource assurance, ecological protection, and economic development have emerged. An accurate grasp of the current status and evolutionary trends of mountain ecosystems is essential to enhance the overall benefits of ecosystem services and maintain regional ecological security. Based on the In VEST(Integrated Valuation of Ecosystem Services and Trade-offs) model, this study analyzed the spatiotemporal evolution patterns and the trade-offs and synergies among ecosystem services(ES) in the Dabie Mountains Area(DMA) of eastern China. The Markov-PLUS(Patch-generating Land Use Simulation) model was used to conduct a multi-scenario simulation of the area's future development. Water yield(WY) and soil conservation(SC) had overall increasing trends during 2000-2020, carbon storage(CS)decreased overall but slowed with time, and habitat quality(HQ) increased and then decreased. The ecological protection scenario is the best scenario for improving ES in the DMA by 2030;compared to 2020, the total WY would decrease by 3.77 × 10^(8) m^(3), SC would increase by 0.65 × 10^(6) t, CS would increase by 1.33 × 10^(6) t, and HQ would increase by 0.06%. The comprehensive development scenario is the second-most effective scenario for ecological improvement, while the natural development scenario did not have a significant effect. However, as the comprehensive development scenario considers both environmental protection and economic development, which are both vital for the sustainable development of the mountainous areas, this scenario is considered the most suitable path for future development. There are trade-offs between WY, CS, and HQ, while there are synergies between SC, CS, and HQ. Spatially, the DMA's central core district is the main strong synergistic area, the marginal zone is the weak synergistic area, and trade-offs are mainly distributed in the transition zone.
基金Under the auspices of National Natural Science Foundation of China (No.41977402,41977194)。
文摘The identification of dominant driving factors for different ecosystem services(ESs)is crucial for ecological conservation and sustainable development.However,the spatial heterogeneity of the dominant driving factors affecting various ESs has not been adequately elucidated,particularly in ecologically fragile regions.This study employed the integrated valuation of ESs and trade-offs(InVEST)model to evaluate four ESs,namely,water yield(WY),soil conservation(SC),habitat quality(HQ),and carbon storage(CS),and then to identify the dominant driving factors of spatiotemporal differentiation of ES and further to characterize the spatial heterogeneity characteristics of the dominant driving factors in the eco-fragile areas of the upper Yellow River,China from 2000 to 2020.The results demonstrated that WY exhibited northeast-high and northwest-low patterns in the upper Yellow River region,while high values of SC and CS were distributed in central forested areas and a high value of HQ was distributed in vast grassland areas.The CS,WY,and SC exhibited decreasing trends over time.The most critical factors affecting WY,SC,HQ,and CS were the actual evapotranspiration,precipitation,slope,and normalized difference vegetation index,respectively.In addition,the effects of different factors on various ESs exhibited spatial heterogeneity.These results could provide spatial decision support for eco-protection and rehabilitation in ecologically fragile areas.
基金This research was funded by the Key Laboratory for Sustainable Development of Xinjiang's Historical and Cultural Tourism,Xinjiang University,China(LY2022-06)the Tianchi Talent Project.
文摘Nature reserves play a significant role in providing ecosystem services and are key sites for biodiversity conservation.The Tianchi Bogda Peak Natural Reserve(TBPNR),located in Xinjiang Uygur Autonomous Region,China,is an important ecological barrier area in the temperate arid zone.The evaluation of its important ecosystem services is of great significance to improve the management level and ecological protection efficiency of the reserve.In the present study,we assessed the spatiotemporal variations of four ecosystem services(including net primary productivity(NPP),water yield,soil conservation,and habitat quality)in the TBPNR from 2000 to 2020 based on the environmental and social data using the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)model.In addition,the coldspot and hotspot areas of ecosystem services were identified by hotspot analysis,and the trade-off and synergistic relationships between ecosystem services were analyzed using factor analysis in a geographic detector.During the study period,NPP and soil conservation values in the reserve increased by 48.20%and 25.56%,respectively;conversely,water yield decreased by 16.56%,and there was no significant change in habitat quality.Spatially,both NPP and habitat quality values were higher in the northern part and lower in the southern part,whereas water yield showed an opposite trend.Correlation analysis revealed that NPP showed a synergistic relationship with habitat quality and soil conservation,and exhibited a trade-off relationship with water yield.Water yield and habitat quality also had a trade-off relationship.NPP and habitat quality were affected by annual average temperature and Normalized Difference Vegetation Index(NDVI),respectively,while water yield and soil conservation were more affected by digital elevation model(DEM).Therefore,attention should be paid to the spatial distribution and dynamics of trade-off and synergistic relationships between ecosystem services in future ecological management.The findings of the present study provide a reference that could facilitate the sustainable utilization of ecosystem services in the typical fragile areas of Northwest China.
基金Under the auspices of the National Natural Science Fundation (No.41901121,42276234)Open Funding of Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research (No.LHGTXT-2024-004)+1 种基金Science and Technology Major Project of Ningbo (No.2022Z181)Key Laboratory of Coastal Zone Exploitation and Protection,Ministry of Natural Resources (No.2023CZEPK04)。
文摘Ecosystem services(ESs)refer to the continuous provisioning of ecosystem goods and services that benefit human beings.Over recent decades,rapid urbanization has exerted significant pressure on coastal ecosystems,resulting in biodiversity and habitat loss,environmental pollution,and the depletion of natural resources.In response to these environmental challenges,the Sustainable Development Goals(SDGs)were proposed.Given the pressing need to address these issues,understanding the changes in ESs under the SDGs is crucial for formulating specific ecological strategies.In this study,we first analyzed land use and cover change in the Zhejiang coasts of China during 2000–2020.Then,we investigated the spatiotemporal configuration of ESs by integrating carbon storage(CS),soil retention(SR),habitat quality(HQ)and water yield(WY)using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.The driving mechanisms of ESs,which varied by space and time,were also explored using the Geo-detector method.The results revealed that,over the past two decades:1)the Zhejiang coasts have experienced a significant increase of 2783.72 km^(2) in built-up land areas and a continuous decrease in farmland areas due to rapid urbanization;2)owing to higher precipitation,extensive vegetation cover,and reduced anthropogenic disturbances,forests emerge as a crucial land use type for maintaining ecosystem services such as HQ,CS,WY,and SR;3)ESs have generally declined across the entire Zhejiang coasts,with a significant decrease observed in the northern areas and an increase in the southern areas spatially;4)the expansion of built-up land areas emerged as the primary factor affecting ecosystem services,while the vegetation factor has been increasingly significant and is expected to become predominant in the near future.Our study provides insights of understanding of ecosystem service theory and emphasizing the importance of preserving biodiversity for long-term sustainable development,and valuable scientific references to support the ecological management decision-making for local governments.
基金funded by the National Natural Science Foundation of China(42071245)the Xinjiang Uygur Autonomous Region Innovation Environment Construction Special Project&Science and Technology Innovation Base Construction Project(PT2107)+2 种基金the Third Xinjiang Comprehensive Scientific Survey Project Sub-topic(2021xjkk140305)the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region(2022TSYCLJ0011)the K.C.Wong Education Foundation(GJTD-2020-14).
文摘The Ili River Delta(IRD)is an ecological security barrier for the Lake Balkhash and an important water conservation area in Central Asia.In this study,we selected the IRD as a typical research area,and simulated the water yield and water conservation from 1975 to 2020 using the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model.We further analyzed the temporal and spatial variations in the water yield and water conservation in the IRD from 1975 to 2020,and investigated the main driving factors(precipitation,potential evapotranspiration,land use/land cover change,and inflow from the Ili River)of the water conservation variation based on the linear regression,piecewise linear regression,and Pearson's correlation coefficient analyses.The results indicated that from 1975 to 2020,the water yield and water conservation in the IRD showed a decreasing trend,and the spatial distribution pattern was"high in the east and low in the west";overall,the water conservation of all land use types decreased slightly.The water conservation volume of grassland was the most reduced,although the area of grassland increased owing to the increased inflow from the Ili River.At the same time,the increased inflow has led to the expansion of wetland areas,the improvement of vegetation growth,and the increase of regional evapotranspiration,thus resulting in an overall reduction in the water conservation.The water conservation depth and precipitation had similar spatial distribution patterns;the change in climate factors was the main reason for the decline in the water conservation function in the delta.The reservoir in the upper reaches of the IRD regulated runoff into the Lake Balkhash,promoted vegetation restoration,and had a positive effect on the water conservation;however,this positive effect cannot offset the negative effect of enhanced evapotranspiration.These results provide a reference for the rational allocation of water resources and ecosystem protection in the IRD.
基金Under the auspices of National Natural Science Foundation of China (No. 42061020)Natural Science Foundation of Guangxi Zhuang Autonomous Region (No. 2018JJA150135)+3 种基金Guangxi Key Research and Development Program (No. AA18118038)Science and Technology Department of Guangxi Zhuang Autonomous Region (No. 2019AC20088)The Program of Improving the Basic Research Ability of Young and Middle-aged Teachers in Guangxi Universities (No. 2021KY0431)High Level Talent Introduction Project of Beibu Gulf University (No. 2019KYQD28)。
文摘Karst environmental issues have become one of the hot spots in contemporary international geological research. The same problem of water shortage is one of the hot spots of global concern. The peak-cluster depression basins in southwest of Guangxi is an important water connotation and ecological barrier areas in the Pearl River Basin of China. Thus, studying the spatial and temporal variations and the influencing factors of its water yield services is critical to achieve the sustainable development of water resources and ecological environmental protection in this region. As such, this paper uses the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model to assess the spatial and temporal variabilities of water yield services and its trends in the peak-cluster depression basins in southwest of Guangxi from 2000 to 2020. This work also integrates precipitation(Pre), reference evapotranspiration(ET), temperature(Tem), digital elevation model(DEM), slope, normalized difference vegetation index(NDVI), land use/land cover(LULC) and soil type to reveal the main factors that influence water yield services with the help of Geodetector. Results show that: 1) in time scale,the total annual water yield in the study area show a fluctuating and increasing trend from 2000 to 2020, with a growth rate of 7.3753 × 10^(8)m^(3)/yr, and its multi-year average water yield was 538.07 mm;2) in spatial pattern, with high yield areas mainly distributed in the south of the study area(mainly including Shangsi County, Pingxiang City, Ningming County, Longzhou County and Jingxi County), and low yield areas mainly distributed in Baise City and Nanning City;3) the dominant factor of water yield within karst and non-karst landforms is not necessarily controlled by precipitation, and the explanation degree of DEM factors in karst areas is significantly higher than that in non-karst areas;4) amongst the climatic factors, Pre, ET and Tem are dominant in the spatial pattern of region water yield capacity. among which Pre has the highest explanatory power for the spatial heterogeneity of annual water production, with q values above0.8, and each driver showed a significant interaction on the spatial distribution of water yield, with Pre exhibiting the strongest interaction with LULC.
基金Under the auspices of National Natural Science Foundation of China (No. 41830643)the Scientific Research Project of the Education Department of Jilin Province (No. JJKH20210567KJ)+1 种基金the Doctoral Research Start-up Fund (No.[2020]35)Scientific Development Project (No.[2019]2) of Yanbian University。
文摘The water conservation(WC) function of ecosystems is related to regional ecological security and the sustainable development of water resources, and the assessment of WC and its influencing factors is crucial for ecological and water resource management.The Tumen River Basin(TRB) is located in the core of the Northeast Asian ecological network and has been experiencing severe ecological crises and water shortages in recent years due to climate change and human activities. However, these crises have not been fully revealed to the extent that corresponding scientific measures are lacking. This study analyzed the spatial and temporal evolution characteristics and drivers of WC in the TRB from 1990 to 2019 based on the water yield module of the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model. The results showed that: 1) under the combined effect of nature and socioeconomics, the WC depth of the TRB has slowly increased at a rate of 0.11 mm/yr in the past 30 years, with an average WC depth of 36.14 mm. 2) The main driving factor of the spatial variation in WC is precipitation, there is a significant interaction between precipitation and velocity, the interaction between each factor is higher than the contribution of a single factor, and the interactions between factors all have nonlinear enhancement and two-factor enhancement. 3) Among the seven counties and municipalities in the study area, the southern part of Helong City and the southeastern part of Longjing City are extremely important areas for WC(> 75 mm), and they should be regarded as regional water resources and ecological priority protection areas. It is foreseen that under extreme climate conditions in the future, the WC of the watershed is under great potential threat, and protection measures such as afforestation and forestation should begin immediately. Furthermore, the great interannual fluctuations in WC depth may place more stringent requirements on the choice of time scales in the ecosystem service assessment process.
文摘探讨土地利用变化所引发的水质净化演变,对于保护和改善水质,实现可持续发展具有重要意义。以“两湖一库”流域为例,运用PLUS(patch-level land use simulation)模型和InVEST(integrated valuation of ecosystem services and tradeoffs)模型生态系统服务水质净化模块,基于2000年、2010年和2020年土地利用数据,模拟流域在未来自然发展情景和生态保护情景下的用地类型时空格局变化以及水质净化特征。定量揭示土地利用变化与水质净化功能的响应关系。结果表明:“两湖一库”流域土地类型以耕地为主,2030年在自然发展情景下耕地、林地、草地面积呈下降趋势,建设用地呈上升趋势,生态保护情景可有效保护流域耕地、林地等空间分布和面积;“两湖一库”流域TN、TP输出量以低强度输出为主,2000—2020年TN输出量先增加后减少,TP输出量逐年增加,水质净化能力呈稳中变好的趋势;2030年自然发展情境下TN输出量持续减少,TP输出量呈向上浮动,生态保护情景下TN、TP输出量较自然发展情景下减少,生态保护情景可以增加水质净化能力。生态用地类型可以有效截留N、P进入水体,生态保护情景下有效降低生态用地类型的变化速度,减少TN、TP的输出量,“两湖一库”流域未来规划中应增加生态用地的占比,增加土地类型对TN、TP的截留能力。
基金supported by the Innovation Projects for Overseas Returnees of Ningxia Hui Autonomous Region-Study on Multi-Scenario Land Use Optimization and Carbon Storage in the Ningxia Section of Yellow River Basin(202303)the National Natural Science Foundation of China(42067022,41761066)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC03024)。
文摘Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.
基金Under the auspices of the National Social Science Found of China(No.21XGL019)Hainan Provincial Natural Science Foundation of China(No.421RC1034)Professor/Doctor Research Foundation of Huizhou University(No.2022JB080)。
文摘Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.
文摘研究以渤海湾为生态系统服务需求区,以渤海湾滨海地区为生态系统服务供给区,从生态系统服务供需的视角,以水资源、水环境、水生态为问题与目标维度构建了渤海湾滨海地区生态安全屏障功能评价体系。根据渤海湾生态问题,截污净化、产水量和生境质量3类指标被筛选为生态安全屏障功能的关键指标,并分别使用生态系统服务和权衡的综合评估模型(Integrated Valuation of Ecosystem Services and Trade-offs,InVEST)模型中的营养物迁移模型、产水量模型和生境质量模型进行评价。此外,对2000—2020年渤海湾滨海地区土地利用格局和截污净化、产水量、生境质量3类生态安全屏障功能指标的时空变化进行评价,并分析了生态安全屏障功能时空演变的驱动因素。研究的主要结果如下:(1)在20 a间渤海湾滨海地区,耕地、未利用地面积减少而建设用地和湿地面积增加,氮磷截留率和产水量增加,但生境质量下降。(2)渤海湾滨海地区综合生态安全屏障功能供给良好,但近年来呈下降趋势。(3)人类活动引起的土地利用变化是影响渤海湾滨海地区生态安全屏障功能时空演变的主要驱动力。研究对渤海湾滨海地区生态安全屏障功能评价方法及结果不仅可指导本区域生态建设,同时对其他区域的生态安全屏障功能评价具有借鉴意义。
文摘水资源短缺问题已经严重制约人类的生产生活,研究不同土地利用条件下的产水量和水源涵养功能,可科学指导区域水资源的利用和管理。利用生态系统服务和权衡的综合评估模型(integrated valuation of ecosystem services and tradeoffs,InVEST)模型分析了杨溪河流域1995年、2005年和2015年不同土地利用情况下的水源涵养量和水源涵养服务价值。结果表明:杨溪河流域在1995年的水源涵养量大于2005年和2015年,2005年和2015年的水源涵养量较为接近;杨溪河流域1995年、2005年和2015年的产水量均显示出上游和下游有较高的产水量;杨溪河流域在1995年、2005年和2015年的水源涵养服务价值分别为23.56亿元/a、21.44亿元/a和21.55亿元/a。人类活动将影响杨溪河流域水源涵养功能,在水资源开发利用方面,要协调好经济、环境和资源等各方的关系,为杨溪河流域等中国南方地区中小流域的开发利用和保护提供参考依据。
基金funded by the National Key R&D Program of China(2023YFC3008502)the National Natural Science Foundation of China(52309103)+2 种基金the Major Science and Technology Programs of the Ministry of Water Resources(MWR)(SKS-2022002)the Chengde Applied Technology Research and Development and Sustainable Development Agenda Innovation Demonstration Zone Special Science and Technology Plan Project(202305B009)the Qinghai Province Applied Basic Research Program(2024-ZJ-773).
文摘The Grain for Green project has had a substantial influence on water conservation in the Huangshui River Basin,China through afforestation and grassland restoration over the past two decades.However,a comprehensive understanding of the spatiotemporal evolution of water conservation function and its driving factors remains incomplete in this basin.In this study,we utilized the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model to examine the spatiotemporal evolution of water conservation function in the Huangshui River Basin from 2000 to 2020.Additionally,we employed the random forest model,Pearson correlation analysis,and geographical detector(Geodetector)techniques to investigate the primary factors and factor interactions affecting the spatial differentiation of water conservation function.The findings revealed several key points.First,the high-latitude northern region of the study area experienced a significant increase in water conservation over the 21-a period.Second,the Grain for Green project has played a substantial role in improving water conservation function.Third,precipitation,plant available water content(PAWC),grassland,gross domestic product(GDP),and forest land were primary factors influencing the water conservation function.Finally,the spatial differentiation of water conservation function was determined by the interactions among geographical conditions,climatic factors,vegetation biophysical factors,and socio-economic factors.The findings have significant implications for advancing ecological protection and restoration initiatives,enhancing regional water supply capabilities,and safeguarding ecosystem health and stability in the Huangshui River Basin.
文摘生境质量是关系人类福祉和实现可持续发展的重要基础,对区域生态保护和土地资源可持续利用具有重大意义。以渭河流域为研究对象,基于2000、2010年和2020年的土地利用数据,应用斑块生成土地利用变化模拟(Patch-generating land use simulation,PLUS)模型、生态系统服务和权衡的综合评估(Integrated valuation of ecosystem services and trade-offs,InVEST)模型预测并评价了土地利用与生境质量时空变化特征。结果表明:(1)2000—2020年渭河流域建设用地和草地面积逐年增加,林地面积略微增长,耕地面积持续减少;2020—2050年土地利用变化趋势同2000—2020年基本一致但剧烈程度显著下降,建设用地扩张趋势减缓,耕地减少幅度下降,草地面积占比超过耕地跃居流域第一。(2)2000—2020年流域内生境质量两极分化趋势明显,低生境质量和高生境质量区域面积有所增加,中等生境质量的面积减少,整体生境质量水平呈上升趋势;2020—2050年生境质量水平继续保持逐年上升趋势但增幅放缓,生境质量变化强度下降,低生境质量区域面积逐渐减少,中等生境质量面积保持稳定,高生境质量面积有所增长。研究结果可为渭河流域土地资源可持续利用和高质量发展提供相应科学依据和决策参考。
基金China National Natural Science Funds for Distinguished Young Scholar,No.71225005The Key Project in the National Science&Technology Pillar Program of China,No.2013BACO3B00
文摘Ecosystem services are substantial elements for human society. The central challenge to meet the human needs from ecosystems while sustain the Earth's life support systems makes it urgent to enhance efficient natural resource management for sustainable ecological and socioeconomic development. Trade-off analysis of ecosystem services can help to identify optimal decision points to balance the costs and benefits of the diverse human uses of ecosystems. In this sense, the aim of this paper is to provide key insights into ecosystem services trade-off analysis at different scales from a land use perspective, by comprehensively reviewing the trade-offs analysis tools and approaches that addressed in ecology, economics and other fields. The review will significantly contribute to future research on trade-off analysis to avoid inferior management options and offer a win-win solution based on comprehensive and efficient planning for interacting multiple ecosystem services.