Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been...Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.展开更多
In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsuran...In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsurance to transfer part of the insurance claims risk.In addition to reinsurance,she also can invests her surplus in a financial market,which is consisted of a risk-free asset and a risky asset described by Heston’s stochastic volatility(SV)model.Considering the performance-related capital flow,the insurer’s wealth process is modeled by a stochastic differential delay equation.The insurer’s target is to find the optimal investment and proportional reinsurance strategy to maximize the expected exponential utility of combined terminal wealth.We explicitly derive the optimal strategy and the value function.Finally,we provide some numerical examples to illustrate our results.展开更多
Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential d...Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential delay equations with small noises, where the coefficients are allowed to be highly nonlinear growth with respect to the variables. Moreover, we obtain the central limit theorem for stochastic differential delay equations which the coefficients are polynomial growth with respect to the delay variables.展开更多
基金Supported by the National Natural Science Foundation of China(71571001)
文摘Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs.
基金This research was supported by the National Natural Science Foundation of China(No.71801186)the Science Foundation of Ministry of Education of China(No.18YJC630001)the Natural Science Foundation of Guangdong Province of China(No.2017A030310660).
文摘In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsurance to transfer part of the insurance claims risk.In addition to reinsurance,she also can invests her surplus in a financial market,which is consisted of a risk-free asset and a risky asset described by Heston’s stochastic volatility(SV)model.Considering the performance-related capital flow,the insurer’s wealth process is modeled by a stochastic differential delay equation.The insurer’s target is to find the optimal investment and proportional reinsurance strategy to maximize the expected exponential utility of combined terminal wealth.We explicitly derive the optimal strategy and the value function.Finally,we provide some numerical examples to illustrate our results.
基金The authors are grateful to the anonymous referees for their valuable comments and corrections. This work was supported in part by the National Natural Science Foundation of China (Grant No. 11401592), the Natural Science Foundation of Hunan Province (No. 13JJ5043), and the Mathematics and Interdisciplinary Sciences Project of Central South University.
文摘Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential delay equations with small noises, where the coefficients are allowed to be highly nonlinear growth with respect to the variables. Moreover, we obtain the central limit theorem for stochastic differential delay equations which the coefficients are polynomial growth with respect to the delay variables.