期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
随机时滞微分方程数值解的渐近均方有界性 被引量:4
1
作者 沈祖梅 胡良剑 《应用数学与计算数学学报》 2016年第1期60-70,共11页
主要研究数值方法能否再现随机时滞微分方程(stochastic delay differential equation,SDDE)解的渐近均方有界性.首先,探讨了使得方程的解均方有界的充分条件.同时,证明了在扩散项与漂移项系数均满足线性增长条件时,欧拉(Euler-Maruyama... 主要研究数值方法能否再现随机时滞微分方程(stochastic delay differential equation,SDDE)解的渐近均方有界性.首先,探讨了使得方程的解均方有界的充分条件.同时,证明了在扩散项与漂移项系数均满足线性增长条件时,欧拉(Euler-Maruyama,EM)方法能够再现这一性质.然而,当减弱漂移项的条件时,EM方法不能再现有界性.为了解决这一问题,证明了后退欧拉(backward EM,BEM)法可以再现SDDE的渐近均方有界性. 展开更多
关键词 渐近矩有界性 欧拉法 后退欧拉法 非线性sdde(stochastic delay DIFFERENTIAL equation)
下载PDF
Existence and Stability of Solutions to Highly Nonlinear Stochastic Differential Delay Equations Driven by G-Brownian Motion 被引量:3
2
作者 FEI Chen FEI Wei-yin YAN Li-tan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第2期184-204,共21页
Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been... Under linear expectation (or classical probability), the stability for stochastic differential delay equations (SDDEs), where their coefficients are either linear or nonlinear but bounded by linear functions, has been investigated intensively. Recently, the stability of highly nonlinear hybrid stochastic differential equations is studied by some researchers. In this paper, by using Peng’s G-expectation theory, we first prove the existence and uniqueness of solutions to SDDEs driven by G-Brownian motion (G-SDDEs) under local Lipschitz and linear growth conditions. Then the second kind of stability and the dependence of the solutions to G-SDDEs are studied. Finally, we explore the stability and boundedness of highly nonlinear G-SDDEs. 展开更多
关键词 stochastic differential delay equation (sdde) SUBLINEAR EXPECTATION EXISTENCE and UNIQUENESS G-Brownian motion stability and BOUNDEDNESS
下载PDF
老化前后湿干处理对番茄及菜花种子的效应 被引量:12
3
作者 谷建田 孔祥辉 陈杭 《种子》 CSCD 北大核心 1992年第3期13-18,共6页
本文以番茄种子(“中杂4号”,“中蔬6号”)和菜花种子(“荷兰雪球”“法国雪球”)为材料,进行湿干处理。结果显示,处理的种子在不同温度条件下发芽率比对照稍有提高,而幼苗生长速度则明显加快,在人工及自然老化条件下,劣变前、后湿干处... 本文以番茄种子(“中杂4号”,“中蔬6号”)和菜花种子(“荷兰雪球”“法国雪球”)为材料,进行湿干处理。结果显示,处理的种子在不同温度条件下发芽率比对照稍有提高,而幼苗生长速度则明显加快,在人工及自然老化条件下,劣变前、后湿干处理以及劣变前后2次处理均能提高或维持种子活力,表现在发芽率,平均苗长,活力指数和贮藏物质转化效率几项指标均极显著高于对照的。浸泡液电导率的降低,表明湿干处理有利于种子细胞膜系统的修复。结果还显示,2次处理的效果更好。 展开更多
关键词 番茄 种子 老化 湿干处理 花椰菜
下载PDF
广义Khasminskii条件下非线性混杂随机时滞微分方程的解的存在唯一性
4
作者 任艳科 胡良剑 《南京信息工程大学学报(自然科学版)》 CAS 2015年第2期189-192,共4页
利用广义伊藤公式证明了混杂随机时滞微分方程(SDDE)在局部Lipschitz和广义Khasminskii条件下存在唯一解,从而涵盖了一大类非线性混杂SDDE.最后给出实例说明了理论的可行性.
关键词 混杂随机时滞微分方程 马尔科夫链 广义Khasminskii条件 局部极大解 存在唯一性
下载PDF
随机延迟微分方程SST方法的稳定性 被引量:1
5
作者 唐占涛 苏欢 丁效华 《黑龙江大学自然科学学报》 CAS 北大核心 2014年第1期13-20,共8页
在延迟随机微分方程领域,随机分步theta(SST)数值方法的应用成果较少。研究随机分步theta(SST)方法应用于随机延迟微分方程(SDDEs)时的稳定性性质,给出在线性增长条件及单边Lipschitz条件下,SST数值解能保持原方程真实解几乎必然指数稳... 在延迟随机微分方程领域,随机分步theta(SST)数值方法的应用成果较少。研究随机分步theta(SST)方法应用于随机延迟微分方程(SDDEs)时的稳定性性质,给出在线性增长条件及单边Lipschitz条件下,SST数值解能保持原方程真实解几乎必然指数稳定的一个充分条件。数值模拟验证了所得结果的正确性及有效性。 展开更多
关键词 关键词 几乎必然指数稳定性 随机分步theta(SST)方法 随机延迟微分方程(sddes)
下载PDF
Numerical Solutions of Hybrid Stochastic Differential Delay Equations under the Generalized Khasminskii-Type Conditions
6
作者 Liangjian Hu Yanke Ren 《数学计算(中英文版)》 2014年第4期112-121,共10页
关键词 随机延迟微分方程 非线性混合型 时滞微分方程 数值解 广义 随机微分方程 唯一性定理 中线性
下载PDF
带Markovian跳的随机时滞微分方程EM数值方法的收敛率
7
作者 刘军 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第3期84-88,92,共6页
给出了一类带Markovian跳的随机时滞微分方程Euler-Maruyama数值方法的收敛率,这类方程对于时滞项可以不满足线性增长条件。结果显示,由于Markovian跳的作用,收敛率与不带跳时完全不同。最后通过例子说明了结论的有效性。
关键词 Markovian跳 时滞微分方程 Euler—Maruyama数值方法 收敛率
原文传递
Optimal Reinsurance and Investment Strategy with Delay in Heston’s SV Model 被引量:1
8
作者 Chun-Xiang A Ai-Lin Gu Yi Shao 《Journal of the Operations Research Society of China》 EI CSCD 2021年第2期245-271,共27页
In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsuran... In this paper,we consider an optimal investment and proportional reinsurance problem with delay,in which the insurer’s surplus process is described by a jump-diffusion model.The insurer can buy proportional reinsurance to transfer part of the insurance claims risk.In addition to reinsurance,she also can invests her surplus in a financial market,which is consisted of a risk-free asset and a risky asset described by Heston’s stochastic volatility(SV)model.Considering the performance-related capital flow,the insurer’s wealth process is modeled by a stochastic differential delay equation.The insurer’s target is to find the optimal investment and proportional reinsurance strategy to maximize the expected exponential utility of combined terminal wealth.We explicitly derive the optimal strategy and the value function.Finally,we provide some numerical examples to illustrate our results. 展开更多
关键词 Proportional reinsurance Stochastic differential delay equation(sdde) Heston’s stochastic volatility(SV)model Hamilton–Jacobi–Bellman(HJB)equation
原文传递
Moderate deviation and central limit theorem for stochastic differential delay equations with polynomial growth 被引量:1
9
作者 Yongqiang SUO Jin TAO Wei ZHANG 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第4期913-933,共21页
Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential d... Employing the weak convergence method, based on a variational representation for expected values of positive functionals of a Brownian motion, we investigate moderate deviation for a class of stochastic differential delay equations with small noises, where the coefficients are allowed to be highly nonlinear growth with respect to the variables. Moreover, we obtain the central limit theorem for stochastic differential delay equations which the coefficients are polynomial growth with respect to the delay variables. 展开更多
关键词 Stochastic differential delay equation sdde polynomial growth central limit theorem moderate deviation principle weak convergence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部