叶面积指数(Leaf Area Index,LAI)作为植被冠层结构的重要描述参数之一,能体现植被光合、蒸腾和呼吸作用的能力。借助GPS和LAI-2200冠层分析仪在攸县黄丰桥林场开展LAI测量。利用ENVI软件对Geo Eye-1数据进行了辐射定标,大气校正和正射...叶面积指数(Leaf Area Index,LAI)作为植被冠层结构的重要描述参数之一,能体现植被光合、蒸腾和呼吸作用的能力。借助GPS和LAI-2200冠层分析仪在攸县黄丰桥林场开展LAI测量。利用ENVI软件对Geo Eye-1数据进行了辐射定标,大气校正和正射校正。通过研究LAI与Geo Eye-1影像波段及其衍生指数的相关性,筛选出2组估算LAI的指数因子(6个指数因子和10个指数因子)。应用k-NN进行叶面积指数反演,同时将反演结果与多元线性回归模型结果进行比较。结果表明:利用2组指数因子进行多元线性回归模型反演LAI中,6个指数因子的模型决定系数R2为0.386,10个指数因子的模型决定系数R2为0.498。从回归模拟的角度分析,10个指数因子得到的模拟结果要优于6个指数因子的模拟结果。利用2组指数因子通过设置4个不同的k值(k=3,5,7,10)得到8个k-NN反演结果中,以10个指数因子得到的k-NN反演结果较好,其中在k=3时效果最好,其决定系数R2为0.733,精度为85.4%。建模精度分析表明选用10个指数因子进行LAI的反演优于选用6个指数因子,其中k-NN方法的反演结果优于多元线性回归模型,说明利用k-NN方法进行LAI的反演是可行的。展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.60503036,60473073(国家自然科学基金)the Fok Ying Tong Education Foundation of China under Grant No.104027(霍英东教育基金)the National Grand Fundamental Research973Program of China under Grant No.2006CB303000(国家重点基础研究发展规划(973))
文摘叶面积指数(Leaf Area Index,LAI)作为植被冠层结构的重要描述参数之一,能体现植被光合、蒸腾和呼吸作用的能力。借助GPS和LAI-2200冠层分析仪在攸县黄丰桥林场开展LAI测量。利用ENVI软件对Geo Eye-1数据进行了辐射定标,大气校正和正射校正。通过研究LAI与Geo Eye-1影像波段及其衍生指数的相关性,筛选出2组估算LAI的指数因子(6个指数因子和10个指数因子)。应用k-NN进行叶面积指数反演,同时将反演结果与多元线性回归模型结果进行比较。结果表明:利用2组指数因子进行多元线性回归模型反演LAI中,6个指数因子的模型决定系数R2为0.386,10个指数因子的模型决定系数R2为0.498。从回归模拟的角度分析,10个指数因子得到的模拟结果要优于6个指数因子的模拟结果。利用2组指数因子通过设置4个不同的k值(k=3,5,7,10)得到8个k-NN反演结果中,以10个指数因子得到的k-NN反演结果较好,其中在k=3时效果最好,其决定系数R2为0.733,精度为85.4%。建模精度分析表明选用10个指数因子进行LAI的反演优于选用6个指数因子,其中k-NN方法的反演结果优于多元线性回归模型,说明利用k-NN方法进行LAI的反演是可行的。
文摘为了改善利用SCATS交通数据估计路段行程时间的效果,通过分析SCATS实际交通数据获取时间间隔不一致的特征,构建了SCATS交通数据虚拟时间序列,将利用因子分析法提取的累计贡献率在85%以上的主因子作为交通模式特征向量的构成要素,用欧氏距离作为当前交通模式特征向量和历史交通模式特征向量相似性的测度指标,以路段行程时间估计误差最小为目标选取当前交通模式的近邻数,对交通模式之间距离的倒数进行归一化处理,确定了相似交通模式的行程时间权重,设计了基于SCATS交通数据的路段行程时间估计方法.实例结果表明:与多元线性回归方法相比,本文方法估计的路段行程时间平均绝对误差、平均绝对百分比误差和均方根误差分别平均减少了9.68 s、8.07%和4.5 s.