Seedlings of the gymnosperm, Pinus edulis Engelm., have a distinctive pattern of starch accumulation following germination; however, the enzymes involved in starch synthesis have not been studied in gymnosperm sp...Seedlings of the gymnosperm, Pinus edulis Engelm., have a distinctive pattern of starch accumulation following germination; however, the enzymes involved in starch synthesis have not been studied in gymnosperm species. In this study, enzymes and starch were extracted from P. edulis seedlings germinated in the dark at room temperature. Granule_bound proteins of 58 kD and 91 kD were recognized by a pea SS Ⅱ antiserum. The 58 kD granule_bound protein was purified and identified as granule_bound starch synthase Ⅰ by alignment of the N_terminal sequence with that of granule_bound starch synthase Ⅰ from several angiosperms. Elution of soluble starch synthase activity from a DEAE_Sepharose column showed two starch synthase activity peaks, indicating at least two isoforms of soluble starch synthases. Primer affinities of soluble starch synthases were investigated. Glycogen from rabbit was the best primer for soluble starch synthase. The enzymological properties of Pinus starch synthases appear to be similar to those reported for angiosperms.展开更多
Based on known cDNAs of rice starch synthase isoforms,we constructed dsRNA interference vectors for starch synthase I(SSI)to produce transgenic plants containing starch with a moderately high amylose content.We invest...Based on known cDNAs of rice starch synthase isoforms,we constructed dsRNA interference vectors for starch synthase I(SSI)to produce transgenic plants containing starch with a moderately high amylose content.We investigated the effect of SSI suppression on grain quality traits,starch biosynthesis,and amylopectin chain distribution in rice plants exposed to two different temperature regimes.The activities and transcripts of BEs,DBEs,and other SS isoforms were further investigated to clarify the effect of SSI suppression on these key enzymes and their specific isoforms under different temperature treatments.Suppression of SSI by RNAi altered grain starch component and amylopectin chain distribution,but it exerted only a slight effect on total starch content(%)and accumulation amount(mg kernel?1)and on starch granule morphology and particle size distribution.Under normal temperature(NT),insignificant differences in kernel weight,chalky kernel proportion,chalky degree,and starch granule morphology between SSI-RNAi line and its wild type(WT)were observed.However,amylose content(AC)level and granule-bound starch synthase(GBSS)activity in rice endosperms were markedly increased by SSI-RNAi suppression.The chalky kernel proportion and chalky degree of SSIRNAi lines were significantly higher than those of WT under high temperature(HT)exposure at filling stage.Inhibition of SSI by RNAi affected amylopectin chain distribution and raised starch gelatinization temperature(GT)in two ways:directly from the SSI deficiency itself and indirectly by reducing BEIIb amounts in an SSI-deficient background.The deficiency of SSI expression led to an alteration in the susceptibility of grain chalkiness occurrence and starch gelatinization temperature to HT exposure,owing to a pleiotropic effect of SSI deficiency on the expression of other genes associated with starch biosynthesis.展开更多
With 10 rice cultivars (lines) as materials, the changes in activities of adenosine diphosphoglucose pyrophosphorylase(ADPGPase), starch synthase (SSase) and starch branching enzyme (Q-enzyme) in the grains during gra...With 10 rice cultivars (lines) as materials, the changes in activities of adenosine diphosphoglucose pyrophosphorylase(ADPGPase), starch synthase (SSase) and starch branching enzyme (Q-enzyme) in the grains during grain filling, and theirrelationships with the filling rate, gel consistency (GC), alkali spreading value (ASV) and amylose content (AC) werestudied. The results showed that changes in activities of ADPGPase, SSase and Q-enzyme exhibited a single peak duringgrain filling, and the time of the activity peaks for the former two enzymes was earlier than that of the maximum grain-fillingrate (Tmax), and the time reaching the peak for Q-enzyme was synchronous with Tmax. The activities at early grain fillingstage, and the mean and maximum activities of each enzyme during grain filling period were positively and significantly orvery significantly correlated with the mean and maximum grain filling rate and starch content (mg grain-1) in the grains.Activities of ADPGPase at all grain filling stages and those of Q-enzyme at the early and mid filling stages were notsignificantly correlated the cooking quality (GC, ASV and AC). SSase activities at the early filling stage were significantlyand negatively correlated with GC and ASV, and positively correlated with AC. Activities of SSase at mid and late grainfilling stages and Q-enzyme at the late filling stage were significantly and positively correlated with GC and ASV, andnegatively correlated with AC. Spraying zeatin or abscisic acid at early grain filling stage could obviously regulate theactivities of ADPGPase, SSase and Q-enzyme in the grains.展开更多
Dynamic changes of starch, amylose, sucrose contents and the activities of starch synthesis enzymes under shading treatments alter flowering were studied using two rice varieties IR72 (indica) and Nipponbare (japon...Dynamic changes of starch, amylose, sucrose contents and the activities of starch synthesis enzymes under shading treatments alter flowering were studied using two rice varieties IR72 (indica) and Nipponbare (japonica) as materials. Under shading treatments, the starch, amylose and sucrose contents decreased, while ADP-glucose pyrophosphorylase (ADPGPPase) activity only changed a little, soluble starch synthase activity and granule bound starch synthase activity decreased, soluble starch branching enzyme (SSBE, Q-enzyme) activity and granule bound starch branching enzyme (GBSBE, Q-enzyme) activity increased, and starch debranching enzyme (DBE, R-enzyme) activity varied with varieties. Correlation analyses showed that the changes of starch content were positively and significantly correlated with the changes of sucrose content in the weak light. Both ADPGPPase activity and SSBE activity were positively and significantly correlated with starch accumulation rate. It was implied that the decline of starch synthase activities was related to the decrease of starch content and the increase of the activity of starch branching enzyme played an important role in the decrease of the ratio of amylose to the total starch under the weak light.展开更多
Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in re...Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in relation to the transformation of free sugars to starch and protein in flag leaves and grains. Activities of sucrose synthase, sucrose phosphate synthase and acid invertase increased till flowering stage in leaves and mid-milky stage(14 d after flowering) in grains and thereafter declined in concomitant with the contents of reducing sugar. Under aerobic conditions, the activities of acid invertase and sucrose synthase(cleavage) significantly decreased in conjunction with the decrease in non-reducing sugars and starch content in all the varieties. Disruption of starch biosynthesis under the influence of aerobic conditions in both leaves and grains and the higher build up of sugars possibly resulted in their favoured utilization in nitrogen metabolism. Feng Ai Zan, PR115 and PR120 maintained higher levels of sucrose synthase enzymes in grains and leaves and contents of metabolites(amino acid, protein and non-reducing sugar) under aerobic conditions, while PR116, Punjab Mehak 1 and PAU201 performed better under transplanting conditions, thus showing their adaptation to environmental stress. Yield gap between aerobic and transplanting rice is attributed primarily to the difference in sink activity and strength. Overall, it appear that up-regulation of sucrose synthase(synthesis) and sucrose phosphate synthase under aerobic conditions might be responsible in enhancing growth and productivity of rice varieties.展开更多
Waxy maize with its pure amylopectin starch is the staple food of many ethnic minorities in hilly regions of Southeast Asia (SEA). A combination of waxy and quality protein maize (QPM) traits would improve the qua...Waxy maize with its pure amylopectin starch is the staple food of many ethnic minorities in hilly regions of Southeast Asia (SEA). A combination of waxy and quality protein maize (QPM) traits would improve the quality of protein of waxy maize for human consumption. Double recessive waxy-QPM (wx-o2) genotypes had been generated from Southern Chinese material by haploid induction of crosses heterozygous for the two quality traits with an absolutely conserved waxy type and an improved amino acid profile. The vitreous kernel trait (due to the additional modifier genes present in QPM) was lost in the wx-o2 plant material; this may be due to the waxy mutation, this is anyhow desirable for acceptance as waxy maize is preferred due to its soft grains. The content of the quality limiting amino acid lysine was greatly increased in double recessive wx-o2 genotypes compared to standard waxy maize, but still with a high variation among genotypes for future improvement. Conclusively, it was indeed possible to combine two grain quality mutations successfully within one genotype and prototypes of double quality wx-o2 are available now to contribute to meet human requirements in essential amino acids and thus reduce malnutrition in various regions of Asia.展开更多
文摘Seedlings of the gymnosperm, Pinus edulis Engelm., have a distinctive pattern of starch accumulation following germination; however, the enzymes involved in starch synthesis have not been studied in gymnosperm species. In this study, enzymes and starch were extracted from P. edulis seedlings germinated in the dark at room temperature. Granule_bound proteins of 58 kD and 91 kD were recognized by a pea SS Ⅱ antiserum. The 58 kD granule_bound protein was purified and identified as granule_bound starch synthase Ⅰ by alignment of the N_terminal sequence with that of granule_bound starch synthase Ⅰ from several angiosperms. Elution of soluble starch synthase activity from a DEAE_Sepharose column showed two starch synthase activity peaks, indicating at least two isoforms of soluble starch synthases. Primer affinities of soluble starch synthases were investigated. Glycogen from rabbit was the best primer for soluble starch synthase. The enzymological properties of Pinus starch synthases appear to be similar to those reported for angiosperms.
基金the National Key Research and Development Program of China (2017YFD0300103)the National Natural Science Foundation of China (31571602, 31871566) for its financial support to this research project
文摘Based on known cDNAs of rice starch synthase isoforms,we constructed dsRNA interference vectors for starch synthase I(SSI)to produce transgenic plants containing starch with a moderately high amylose content.We investigated the effect of SSI suppression on grain quality traits,starch biosynthesis,and amylopectin chain distribution in rice plants exposed to two different temperature regimes.The activities and transcripts of BEs,DBEs,and other SS isoforms were further investigated to clarify the effect of SSI suppression on these key enzymes and their specific isoforms under different temperature treatments.Suppression of SSI by RNAi altered grain starch component and amylopectin chain distribution,but it exerted only a slight effect on total starch content(%)and accumulation amount(mg kernel?1)and on starch granule morphology and particle size distribution.Under normal temperature(NT),insignificant differences in kernel weight,chalky kernel proportion,chalky degree,and starch granule morphology between SSI-RNAi line and its wild type(WT)were observed.However,amylose content(AC)level and granule-bound starch synthase(GBSS)activity in rice endosperms were markedly increased by SSI-RNAi suppression.The chalky kernel proportion and chalky degree of SSIRNAi lines were significantly higher than those of WT under high temperature(HT)exposure at filling stage.Inhibition of SSI by RNAi affected amylopectin chain distribution and raised starch gelatinization temperature(GT)in two ways:directly from the SSI deficiency itself and indirectly by reducing BEIIb amounts in an SSI-deficient background.The deficiency of SSI expression led to an alteration in the susceptibility of grain chalkiness occurrence and starch gelatinization temperature to HT exposure,owing to a pleiotropic effect of SSI deficiency on the expression of other genes associated with starch biosynthesis.
基金supported by the National Natural Science Foundation of China(30370828)the Natural Science Foundation of Jiangsu Province,China(BK2003041)
文摘With 10 rice cultivars (lines) as materials, the changes in activities of adenosine diphosphoglucose pyrophosphorylase(ADPGPase), starch synthase (SSase) and starch branching enzyme (Q-enzyme) in the grains during grain filling, and theirrelationships with the filling rate, gel consistency (GC), alkali spreading value (ASV) and amylose content (AC) werestudied. The results showed that changes in activities of ADPGPase, SSase and Q-enzyme exhibited a single peak duringgrain filling, and the time of the activity peaks for the former two enzymes was earlier than that of the maximum grain-fillingrate (Tmax), and the time reaching the peak for Q-enzyme was synchronous with Tmax. The activities at early grain fillingstage, and the mean and maximum activities of each enzyme during grain filling period were positively and significantly orvery significantly correlated with the mean and maximum grain filling rate and starch content (mg grain-1) in the grains.Activities of ADPGPase at all grain filling stages and those of Q-enzyme at the early and mid filling stages were notsignificantly correlated the cooking quality (GC, ASV and AC). SSase activities at the early filling stage were significantlyand negatively correlated with GC and ASV, and positively correlated with AC. Activities of SSase at mid and late grainfilling stages and Q-enzyme at the late filling stage were significantly and positively correlated with GC and ASV, andnegatively correlated with AC. Spraying zeatin or abscisic acid at early grain filling stage could obviously regulate theactivities of ADPGPase, SSase and Q-enzyme in the grains.
文摘Dynamic changes of starch, amylose, sucrose contents and the activities of starch synthesis enzymes under shading treatments alter flowering were studied using two rice varieties IR72 (indica) and Nipponbare (japonica) as materials. Under shading treatments, the starch, amylose and sucrose contents decreased, while ADP-glucose pyrophosphorylase (ADPGPPase) activity only changed a little, soluble starch synthase activity and granule bound starch synthase activity decreased, soluble starch branching enzyme (SSBE, Q-enzyme) activity and granule bound starch branching enzyme (GBSBE, Q-enzyme) activity increased, and starch debranching enzyme (DBE, R-enzyme) activity varied with varieties. Correlation analyses showed that the changes of starch content were positively and significantly correlated with the changes of sucrose content in the weak light. Both ADPGPPase activity and SSBE activity were positively and significantly correlated with starch accumulation rate. It was implied that the decline of starch synthase activities was related to the decrease of starch content and the increase of the activity of starch branching enzyme played an important role in the decrease of the ratio of amylose to the total starch under the weak light.
文摘Six rice varieties, PR120, PR116, Feng Ai Zan, PR115, PAU201 and Punjab Mehak 1 were raised under aerobic and transplanting conditions to assess the effects of planting conditions on sucrose metabolising enzymes in relation to the transformation of free sugars to starch and protein in flag leaves and grains. Activities of sucrose synthase, sucrose phosphate synthase and acid invertase increased till flowering stage in leaves and mid-milky stage(14 d after flowering) in grains and thereafter declined in concomitant with the contents of reducing sugar. Under aerobic conditions, the activities of acid invertase and sucrose synthase(cleavage) significantly decreased in conjunction with the decrease in non-reducing sugars and starch content in all the varieties. Disruption of starch biosynthesis under the influence of aerobic conditions in both leaves and grains and the higher build up of sugars possibly resulted in their favoured utilization in nitrogen metabolism. Feng Ai Zan, PR115 and PR120 maintained higher levels of sucrose synthase enzymes in grains and leaves and contents of metabolites(amino acid, protein and non-reducing sugar) under aerobic conditions, while PR116, Punjab Mehak 1 and PAU201 performed better under transplanting conditions, thus showing their adaptation to environmental stress. Yield gap between aerobic and transplanting rice is attributed primarily to the difference in sink activity and strength. Overall, it appear that up-regulation of sucrose synthase(synthesis) and sucrose phosphate synthase under aerobic conditions might be responsible in enhancing growth and productivity of rice varieties.
文摘Waxy maize with its pure amylopectin starch is the staple food of many ethnic minorities in hilly regions of Southeast Asia (SEA). A combination of waxy and quality protein maize (QPM) traits would improve the quality of protein of waxy maize for human consumption. Double recessive waxy-QPM (wx-o2) genotypes had been generated from Southern Chinese material by haploid induction of crosses heterozygous for the two quality traits with an absolutely conserved waxy type and an improved amino acid profile. The vitreous kernel trait (due to the additional modifier genes present in QPM) was lost in the wx-o2 plant material; this may be due to the waxy mutation, this is anyhow desirable for acceptance as waxy maize is preferred due to its soft grains. The content of the quality limiting amino acid lysine was greatly increased in double recessive wx-o2 genotypes compared to standard waxy maize, but still with a high variation among genotypes for future improvement. Conclusively, it was indeed possible to combine two grain quality mutations successfully within one genotype and prototypes of double quality wx-o2 are available now to contribute to meet human requirements in essential amino acids and thus reduce malnutrition in various regions of Asia.