Galois rings and exponential sums over Galois rings have many applications in algebraic combinatorics, coding theory and cryptography. In this paper, we present explicit description on the Gauss sums and Jacobi sums o...Galois rings and exponential sums over Galois rings have many applications in algebraic combinatorics, coding theory and cryptography. In this paper, we present explicit description on the Gauss sums and Jacobi sums over Galois ring GR(p2 , r), and show that the values of these sums can be reduced to the Gauss sums and Jacobi sums over finite field Fpr for all non-trivial cases.展开更多
In this paper, we discuss the relation between the partial sums of Jacobi serier on an elliptic region and the corresponding partial sums of Fourier series. From this we derive a precise approximation formula by the p...In this paper, we discuss the relation between the partial sums of Jacobi serier on an elliptic region and the corresponding partial sums of Fourier series. From this we derive a precise approximation formula by the partial sums of Jacobi series on an elliptic region.展开更多
最近,Takashi Agoh对于素数p≡1(mod4)给出了计算二次域Q(p^(1/2))的类数h的一个公式,此公式仅依赖于Q(p^(1/2))的基本单位ε,素数p以及数a=1+sum from k=1 to(p-1)/2((-1)~kN_K).孙琦教授对奇素数p,得到N_k的若干性质和计算N_2,N_3,N_...最近,Takashi Agoh对于素数p≡1(mod4)给出了计算二次域Q(p^(1/2))的类数h的一个公式,此公式仅依赖于Q(p^(1/2))的基本单位ε,素数p以及数a=1+sum from k=1 to(p-1)/2((-1)~kN_K).孙琦教授对奇素数p,得到N_k的若干性质和计算N_2,N_3,N_4的公式.本文对奇素数p,得到N_k的若干新性质和N_5,N_6的计算公式,展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.60973125 and 10990011)Science and Technology on Information Assurance Lab(Grant No.KJ-12-01)the Tsinghua National Lab for Information Science and Technology
文摘Galois rings and exponential sums over Galois rings have many applications in algebraic combinatorics, coding theory and cryptography. In this paper, we present explicit description on the Gauss sums and Jacobi sums over Galois ring GR(p2 , r), and show that the values of these sums can be reduced to the Gauss sums and Jacobi sums over finite field Fpr for all non-trivial cases.
文摘In this paper, we discuss the relation between the partial sums of Jacobi serier on an elliptic region and the corresponding partial sums of Fourier series. From this we derive a precise approximation formula by the partial sums of Jacobi series on an elliptic region.
文摘最近,Takashi Agoh对于素数p≡1(mod4)给出了计算二次域Q(p^(1/2))的类数h的一个公式,此公式仅依赖于Q(p^(1/2))的基本单位ε,素数p以及数a=1+sum from k=1 to(p-1)/2((-1)~kN_K).孙琦教授对奇素数p,得到N_k的若干性质和计算N_2,N_3,N_4的公式.本文对奇素数p,得到N_k的若干新性质和N_5,N_6的计算公式,
基金Supported by the National Natural Science Foundation of China(10471069)Scientific Research Fund of Zhejiang Provincia]Education Department (20051778).