期刊文献+
共找到31,361篇文章
< 1 2 250 >
每页显示 20 50 100
Changes in Sediment Sources in the Southern Muddy Area of Weihai,China,Since the Late Pleistocene:A Record from Rare Earth Elements
1
作者 ZHANG Zhichao LIU Jinqing +3 位作者 YIN Ping CAO Ke FENG Xiaokun WANG Shengyu 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1221-1232,共12页
The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea inte... The small muddy areas developed in the southern Shandong Peninsula have attracted increasing attention from researchers because of complex changes in sediment sources driven by sea-level fluctuations and land-sea interactions since the late Pleistocene.This study investigates the evolution of sediment sources and their responses to environmental changes since the late Pleistocene,using core WHZK01 collected from the nearshore muddy area in southern Weihai for rare earth element(REE)analysis.In doing so,this work highlights the changing patterns of material sources and the primary control factors.The results reveal that the sedimentary deposits in core WHZK01 exhibit distinct terrestrial characteristics.Discriminant function analysis(F_(D))and source discrimination dia-grams both suggest that the primary sources of these deposits are the Yellow River and adjacent small and medium-sized rivers,although the sources vary among different sedimentary units.Furthermore,the DU3 layer(17.82-25.10 m)displays typical riverine sedimentation,dominated by terrestrial detrital input,primarily from the local rivers,namely the Huanglei and Muzhu Rivers.The material in the DU2 layer(14.91-17.82 m)is mainly influenced by a mixture of the Qinglong and Yellow Rivers.The DU1 layer(0-14.91 m)is influenced by sea-level changes during the Holocene,with the Yellow River being the primary source,although there is also some input from local rivers.The changes in sea level during the Holocene and the input of Yellow River material carried by the coastal currents of the Yellow Sea are identified as the main controlling factors for the changes in material sources in the study area since the late Pleistocene,with small and mediumsized rivers also exerting some influence on the material sources.The above mentioned findings not only contribute to a better understanding of the source-sink systems of the Yellow River and adjacent small and mediumsized rivers but also deepen our understanding of the late Quaternary land-sea interactions in the Shandong Peninsula. 展开更多
关键词 rare earth element source identification environmental evolution muddy area southern Weihai
下载PDF
Effect and Mechanism of Rare Earth Hydrotalcite Inhibiting Coal Spontaneous Combustion
2
作者 张小娟 LIU Bo +1 位作者 罗振敏 SUN Lu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期50-59,共10页
A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition... A hydrotalcite(layered double hydroxide, LDH) inhibitor which is suitable for the whole process of coal spontaneous combustion and a LDH inhibitor containing rare earth lanthanum elements were prepared. The inhibition effect and mechanism were analyzed by scanning electron microscopy(SEM),X-ray diffraction(XRD), thermal performance analysis, in-situ diffuse reflectance infrared spectroscopy and temperature-programmed experiment. The results have shown that the inhibitor containing lanthanum can play a good inhibitory role in every stage of coal oxidation. During the slow oxidation of coal samples, the inhibitor containing lanthanum ions can slow down the oxidation process of coal and increase the initial temperature of coal spontaneous combustion. At the same time, because the hydroxyl groups in LDHs are connected with-COO-groups on the coal surface through hydrogen bonds, the stability of coal is improved. With the increase of temperature, LDHs can remove interlayer water molecules and reduce the surface temperature of coal. CO release rate of coal samples decreases significantly after adding inhibitor containing lanthanum element, and the maximum inhibition rate of the inhibitor is 58.1%. 展开更多
关键词 rare earth HYDROTALCITE coal spontaneous combustion MECHANISM
原文传递
Rare Earth Elements(La,Ce,Pr)Modified Co/NC Catalyst for Efficient and Stable Ammonia Decomposition to Hydrogen Production
3
作者 ZHU Yi PAN Hongfei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1372-1378,共7页
Co/NC catalysts modified with rare earth elements(La,Ce,Pr)were prepared by pyrolysis of rare earth elements doped ZIF-67.The experimental results show that the modification of rare earth elements significantly improv... Co/NC catalysts modified with rare earth elements(La,Ce,Pr)were prepared by pyrolysis of rare earth elements doped ZIF-67.The experimental results show that the modification of rare earth elements significantly improves the ammonia decomposition activity and stability of the Co/NC catalyst.The La-Co/NC catalyst can achieve an 82.3%ammonia decomposition and 18.4 mmol hydrogen production rate at 550℃with a GHSV of 20000 cm^(3)·h^(-1).Furthermore,no obvious performance degradation is observed after 72 hours of reaction for all rare earth elements modified catalysts.It is shown that the modification of rare earth elements significantly improves the surface alkalinity and surface chemical state of the catalyst,and thus improves the ammonia decomposition activity of the catalyst.A new type of high-performance ammonia decomposition Co-based catalyst is proposed,and the promoting effect of rare earth elements on the activity of ammonia decomposition is revealed. 展开更多
关键词 hydrogen carrier hydrogen production ammonia decomposition rare earth elements cobalt-based catalysts
原文传递
Improvement strategy on thermophysical properties of A_(2)B_(2)O_(7)-type rare earth zirconates for thermal barrier coatings applications:A review
4
作者 Zijian Peng Yuhao Wang +8 位作者 Shuqi Wang Junteng Yao Qingyuan Zhao Enyu Xie Guoliang Chen Zhigang Wang Zhanguo Liu Yaming Wang Jiahu Ouyang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1147-1165,共19页
The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced ... The A_(2)B_(2)O_(7)-type rare earth zirconate compounds have been considered as promising candidates for thermal barrier coating(TBC) materials because of their low sintering rate,improved phase stability,and reduced thermal conductivity in contrast with the currently used yttria-partially stabilized zirconia (YSZ) in high operating temperature environments.This review summarizes the recent progress on rare earth zirconates for TBCs that insulate high-temperature gas from hot-section components in gas turbines.Based on the first principles,molecular dynamics,and new data-driven calculation approaches,doping and high-entropy strategies have now been adopted in advanced TBC materials design.In this paper,the solid-state heat transfer mechanism of TBCs is explained from two aspects,including heat conduction over the full operating temperature range and thermal radiation at medium and high temperature.This paper also provides new insights into design considerations of adaptive TBC materials,and the challenges and potential breakthroughs are further highlighted for extreme environmental applications.Strategies for improving thermophysical performance are proposed in two approaches:defect engineering and material compositing. 展开更多
关键词 rare earth zirconates thermal barrier coatings defect engineering doping and compositing thermal conductivity thermal expansion
下载PDF
The Electrocatalytic Performance of Rare Earth Ion Doped Co_(0.2)Ni_(0.8)-MOF-74 Catalyst for Nitrogen Reduction
5
作者 YUE Song GONG Lunjun +4 位作者 YANG Tonghui HU Weida LIU Xiaopan GAO Pengzhao XIAO Hanning 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1337-1347,共11页
We took Co_(0.2)Ni_(0.8)-MOF-74 with bimetallic synergistic effect as the basic material,and selected rare earth ions Ho,Gd,and Er with ion radii close to Co and Ni as the research objects for doping.The influence of ... We took Co_(0.2)Ni_(0.8)-MOF-74 with bimetallic synergistic effect as the basic material,and selected rare earth ions Ho,Gd,and Er with ion radii close to Co and Ni as the research objects for doping.The influence of rare earth ion doping amount and doping type on the eNRR performance of the catalyst was explored.The experimental results show that the ammonia yield rate and Faraday efficiency doped with Co_(0.2)Ni_(0.8)-MOF-0.5Ho are the highest,reaching 1.28×10^(-10)mol·s^(-1)·cm^(-2)/39.8%,which is higher than the1.12×10^(-10)mol·s^(-1)·cm^(-2)/32.2%of Co_(0.2)Ni_(0.8)-MOF-74,and is about 14.3%/23.7%higher than that without doping,respectively.And the stability of Co_(0.2)Ni_(0.8)-MOF-0.5 Ho is good(after 80 hours of continuous testing,the current density did not significantly decrease).This is mainly due to doping,which gives Co_(0.2)Ni_(0.8)-MOF-74 a larger specific surface area and catalytic active sites.The catalyst doped at the same time has more metal cation centers,which increases the electron density of the metal centers and enhances the corresponding eNRR performance. 展开更多
关键词 electrocatalytic nitrogen reduction metal organic framework rare earth ions DOPING
原文传递
Association between Exposure of Rare Earth Elements and Outcomes of In Vitro Fertilization-Embryo Transfer in Beijing
6
作者 Yutong Wang Jing Li +9 位作者 Shirong Xu Shengli Lin Zhenchen Hou Linlin Wang Yali Huang Yue Sun Wei Guo Lailai Yan Ying Wang Chan Tian 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第8期876-886,共11页
Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses.Methods A total of 141 ... Objective The study aimed to investigate the impact of rare earth elements(REEs)exposure on pregnancy outcomes of in vitro fertilization-embryo transfer(IVF-ET)by analyzing samples from spouses.Methods A total of 141 couples were included.Blood and follicular fluid from the wives and semen plasma from the husbands,were analyzed for REEs using inductively coupled plasma mass spectrometry(ICP-MS).Spearman's correlation coefficients and the Mann–Whitney U test were used to assess correlations and compare REE concentrations among three types of samples,respectively.Logistic models were utilized to estimate the individual REE effect on IVF-ET outcomes,while BKMR and WQS models explored the mixture of REE interaction effects on IVF-ET outcomes.Results Higher La concentration in semen(median 0.089 ng/mL,P=0.03)was associated with a lower fertilization rate.However,this effect was not observed after artificial selection intervention through intracytoplasmic sperm injection(ICSI)(P=0.27).In semen,the REEs mixture did not exhibit any significant association with clinical pregnancy.Conclusion Our study revealed a potential association between high La exposure in semen and a decline in fertilization rate,but not clinical pregnancy rate.This is the first to report REEs concentrations in follicular fluid with La,Ce,Pr,and Nd found at significantly lower concentrations than in serum,suggesting that these four REEs may not accumulate in the female reproductive system.However,at the current exposure levels,mixed REEs exposure did not exhibit reproductive toxicity. 展开更多
关键词 rare earth elements In vitro fertilization Pregnancy outcomes Mixture exposure analysis
下载PDF
Wetting front migration model of ion-adsorption rare earth during the multi-hole unsaturated liquid injection
7
作者 Yu Wang Xiaojun Wang +8 位作者 Yuchen Qiu Hao Wang Gang Li Kaijian Hu Wen Zhong Zhongqun Guo Bing Li Chunlei Zhang Guangxiang Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期483-496,共14页
In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distanc... In the process of ion-adsorption rare earth ore leaching,the migration characteristics of the wetting front in multi-hole injection holes and the influence of wetting front intersection effect on the migration distance of wetting fronts are still unclear.Besides,wetting front migration distance and leaching time are usually required to optimize the leaching process.In this study,wetting front migration tests of ionadsorption rare earth ores during the multi-hole fluid injection(the spacing between injection holes was 10 cm,12 cm and 14 cm)and single-hole fluid injection were completed under the constant water head height.At the pre-intersection stage,the wetting front migration laws of ion-adsorption rare earth ores during the multi-hole fluid injection and single-hole fluid injection were identical.At the postintersection stage,the intersection accelerated the wetting front migration.By using the Darcy’s law,the intersection effect of wetting fronts during the multi-hole liquid injection was transformed into the water head height directly above the intersection.Finally,based on the Green-Ampt model,a wetting front migration model of ion-adsorption rare earth ores during the multi-hole unsaturated liquid injection was established.Error analysis results showed that the proposed model can accurately simulate the infiltration process under experimental conditions.The research results enrich the infiltration law and theory of ion-adsorption rare earth ores during the multi-hole liquid injection,and this study provides a scientific basis for optimizing the liquid injection well pattern parameters of ion-adsorption rare earth in situ leaching in the future. 展开更多
关键词 Ion-adsorption rare earth ore Multi-hole unsaturated liquid injection In situ leaching Intersection effect Calculation model
下载PDF
Differential Expression Analysis of Proteins Regulated by Rare Earth Cerium in Soybean Leaves at Seedling Stage
8
作者 Ren Hongyu Zhang Tianren +3 位作者 Miao Yanli Li Haoyang Zhang Shuying Zhang Xingwen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期42-52,共11页
This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, ... This study was to explore the functional mechanism of rare earth regulating soybean leaves and the characteristics and functions of differentially expressed proteins under the regulation of rare earth. In this study, Dongnong 42 was used as material, and 30 mg·L^(-1) CeCl_(3) solution was sprayed on soybean leaves at the seedling stage. Tandem mass tag(TMT) quantitative proteomics technique and bioinformatics analysis were used to identify soybean leaf proteins. A total of 8 510 proteins were identified, and 127 differentially expressed proteins(DEPs) in response to rare earth cerium regulation were identified, among which 64 were upregulated and 63 were down-regulated. The gene ontology(GO) annotation indicated that DEPs were mainly involved in metabolic process, cellular process, response to stimulus, biological regulation, and response to a stimulus;DEPs in cell module categories were mainly involved in cells, cell part, organelle, membrane, membrane part, organelle par, and protein-containing complex;DEPs in molecular functional categories were mainly involved in catalytic activity, binding and antioxidant activity. Kyoto encyclopedia of genes and genomes(KEGG) pathway significantly enriched starch and sucrose metabolism, glycolysis/gluconeogenesis, galactose metabolism, pentose phosphate pathway, and MAPK signaling pathway-plant. These DEPs were mainly involved in photosynthesis, glucose metabolism and stress response. Forty-six differential protein interaction networks were identified by protein interaction network analysis. This experiment provided a reference for studies of the mechanism of rare earth cerium regulating soybean leaf function from the proteomic perspective. 展开更多
关键词 rare earth soybean PROTEOMICS tandem mass tag(TMT)
下载PDF
Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel 被引量:4
9
作者 Yushuo Li Yanwu Dong +3 位作者 Zhouhua Jiang Qingfei Tang Shuyang Du Zhiwen Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期324-334,共11页
The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the... The hot deformation behavior of Mn18Cr18N and Mn18Cr18N+Ce high nitrogen austenitic stainless steels at 1173-1473 K and 0.01-1 s^(-1) were investigated by thermal compression tests.The influence mechanism of Ce on the hot deformation behavior was analyzed by Ce-containing inclusions and segregation of Ce.The results show that after the addition of Ce,large,angular,hard,and brittle inclusions(TiN-Al_(2)O_(3),TiN,and Al_(2)O_(3)) can be modified to fine and dispersed Ce-containing inclusions(Ce-Al-O-S and TiN-Ce-Al-O-S).During the solidification,Ce-containing inclusions can be used as heterogeneous nucleation particles to refine as-cast grains.During the hot deformation,Ce-containing inclusions can pin dislocation movement and grain boundary migration,induce dynamic recrystallization(DRX)nucleation,and avoid the formation and propagation of micro cracks and gaps.In addition,during the solidification,Ce atoms enrich at the front of solid-li-quid interface,resulting in composition supercooling and refining the secondary dendrites.Similarly,during the hot deformation,Ce atoms tend to segregate at the boundaries of DRX grains,inhibiting the growth of grains.Under the synergistic effect of Ce-containing inclusions and Ce segregation,although the hot deformation resistance and hot deformation activation energy are improved,DRX is more likely to occur and the size of DRX grains is significantly refined,and the problem of hot deformation cracking can be alleviated.Finally,the microhardness of the samples was measured.The results show that compared with as-cast samples,the microhardness of hot-deformed samples increases signific-antly,and with the increase of DRX degree,the microhardness decreases continuously.In addition,Ce can affect the microhardness of Mn18Cr18N steel by affecting as-cast and hot deformation microstructures. 展开更多
关键词 rare earth hot deformation Mn18Cr18N steel non-metallic inclusions element segregation MICROHARDNESS
下载PDF
Effect of rare earth on morphology and dispersion of TiB2 phase in Al-Ti-B alloy refiner 被引量:2
10
作者 Zhi-qiang Chen Wen-xin Hu +1 位作者 Lei Shi Wei Wang 《China Foundry》 SCIE CAS CSCD 2023年第2期115-124,共10页
To investigate the effect of rare earth on size and distribution of TiB2 phase in aluminum alloy refiner,Al-5Ti-1B-RE master alloy was fabricated,and its microstructure and phase constitutions were investigated by the... To investigate the effect of rare earth on size and distribution of TiB2 phase in aluminum alloy refiner,Al-5Ti-1B-RE master alloy was fabricated,and its microstructure and phase constitutions were investigated by the combination of first principles calculations and experimental investigation.The calculated results reveal that Ce has the most effective modification ability due to the most positive adsorption energy and the largest charge transfer value compared with other rare earth elements.Results of experimental investigation indicate that the addition of rare earth in the Al-5Ti-1B alloys can greatly refine the particle size of TiB2,improve the distribution of particles and lead to better refinement effect than that of the Al-5Ti-1B alloys without rare earth.Moreover,Ce has the best optimization effect,which agrees well with the calculated results. 展开更多
关键词 Al-Ti-B refiner rare earth TIB2 distribution
下载PDF
Rare earth elemental and Sr isotopic evidence for seawater intrusion event of the Songliao Basin 91 million years ago 被引量:1
11
作者 Yu-Ke Liu Hua-jian Wang +5 位作者 Jin-You Zhang Zhen-Wu Liu Fa-Zi Chen Xiao-Mei Wang Shui-Chang Zhang He Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1347-1362,共16页
Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingsha... Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingshankou Formation,the Songliao Basin.Sedimentary and elemental signatures confirm the protogenetic origin of this nodule and its effectiveness in recording geochemical characteristics of paleo-lake water during dolomitization.The low Y/Ho ratios,middle rare earth element(MREE)enrichment and subtle positive Eu anomalies within the nodule indicate a fresh water source.However,the Sr isotope values in the core of the nodule(0.7076-0.7080)are close to contemporaneous seawater(0.7074),yet different from the modern river(0.7120)and the host black shale(0.7100).On the premise of excluding the influence of hydrothermal fluids,the significantly low strontium isotope values of the lacustrine dolomite might be caused by seawater interference during dolomitization.Our findings demonstrate that lacustrine dolomite within black shales is not only a faithful tracer of diagenetic water environment,but also a novel and easily identified mineralogical evidence for episodic seawater intrusion event(91 Ma)in the Songliao Basin,which supplements other paleontological and geochemical evidence. 展开更多
关键词 Songliao Basin Lacustrine dolostone Seawater intrusion rare earth elements Strontium isotope
下载PDF
Rare earth alloy nanomaterials in electrocatalysis 被引量:1
12
作者 Yifei Li Xilin Yuan +5 位作者 Ping Wang Lulin Tang Miao He Pangen Li Jiang Li Zhenxing Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期574-594,I0014,共22页
With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, researc... With the rapid development of society and economy, the excessive consumption of fossil energy has led to the global energy and environment crisis. In order to explore the sustainable development of new energy, research based on electrocatalysis has attracted extensive attention in the academic circle. The main challenge in this field is to develop nano-catalysts with excellent electrocatalytic activity and selectivity for target products. The state of the active site in catalyst plays a decisive role in the activity and selectivity of the reaction. In order to design efficient and excellent catalysts, it is an effective means to adjust the electronic structure of catalysts. Electronic effects are also called ligand effects. By alloying with rare earth(RE) elements, electrons can be redistributed between RE elements and transition metal elements, achieving accurate design of the electronic structure of the active site in the alloy. Because of the unique electronic structure of RE, it has been paid attention in the field of catalysis. The outermost shell structure of RE elements is basically the same as that of the lower shell, except that the number of electrons in the 4f orbital is different, but the energy level is similar, so their properties are very similar. When RE elements form compounds, both the f electrons in the outermost shell and the d electrons in the lower outer shell can participate in bonding. In addition, part of the 4f electrons in the third outer shell can also participate in bonding.In order to improve the performance of metal catalysts, alloying provides an effective method to design advanced functional materials. RE alloys can integrate the unique electronic structure and catalytic behavior of RE elements into metal materials, which not only provides an opportunity to adjust the electronic structure and catalytic activity of the active component, but also enhances the structural stability of the alloy and is expected to significantly improve the catalytic performance of the catalyst. From the perspective of electronic and catalytic activity, RE elements have unique electronic configuration and lanthanide shrinkage effect. Alloying with RE elements will make the alloy have more abundant electronic structure, activity, and spatial arrangement, effectively adjusting the reaction kinetics of the electrochemical process of the catalyst. In this paper, the composition,structure, synthesis of RE alloys and their applications in the field of electrocatalysis are summarized, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the methanol oxidation reaction, the ethanol oxidation reaction, and other catalytic reactions. At the same time, the present challenges of RE alloy electrocatalytic materials are summarized and their future development direction is pointed out. In the field of electrocatalysis, the cost of catalyst is too high and the stability is not strong. Therefore, the testing process should be related to the actual application, and the test method should be standardized, so as to carry forward the field of electrocatalysis. 展开更多
关键词 rare earth Alloy nanomaterials ELECTROCATALYSIS Preparation methods Hydrogen evolution reaction Oxygen reduction reaction Methanol oxidation reaction Ethanol oxidation reaction
下载PDF
Study on Copolymerization of Rare Earth-Carboxylic Acid Complex 被引量:1
13
作者 邱关明 张明 +3 位作者 严长浩 周兰香 戴少俊 Okamo to Hiroshi 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第6期618-621,共4页
Complex of rare earth with carboxylic acid was prepared by precipitation and direct method. It was copolymerized with such monomers as acrylic acid and other ones to synthesize ionomer of rare earth and organic polyme... Complex of rare earth with carboxylic acid was prepared by precipitation and direct method. It was copolymerized with such monomers as acrylic acid and other ones to synthesize ionomer of rare earth and organic polymer with different rare earth contents. Its glass-transition temperature and heat stability were analyzed by TG and DTA. Infra-red detector was used to show its structure. The effect of rare earth complex prepared by different methods on copolymerization and properties of copolymers was also discussed. 展开更多
关键词 organic material rare earth ionomer COPOLYMERIZATION rare earth complex monomer rare earth-carboxylic acid complex rare earths
下载PDF
Geochemical characterization of rare earth elements in sediment profiles from the Oualida lagoon(Morocco)
14
作者 Nezha Mejjad Abdelmourhit Laissaoui +2 位作者 Ouafa El Hammoumi Ahmed Fekri Hamid Amsil 《Acta Geochimica》 EI CAS CSCD 2023年第6期1051-1064,共14页
The present work assesses the temporal distribution pattern and geochemical changes of rare earth elements and Yttrium, Scandium, Thorium, and Uranium delivery into the Oualidia lagoon. Two sediment cores were retriev... The present work assesses the temporal distribution pattern and geochemical changes of rare earth elements and Yttrium, Scandium, Thorium, and Uranium delivery into the Oualidia lagoon. Two sediment cores were retrieved from the Oualidia lagoon and analyzed using neutron activation analysis. The results indicated that heavy rare earth elements are slightly enriched the sediment cores over light rare earth elements. The highest values of REEs were recorded in the top layers of the cores and depleted with depth, suggesting a possible change in factors controlling their accumulation, including mechanical, chemical, and environmental parameters such as weathering intensity, grain size, and Fe-Mn oxides. The sediments display positive Ce anomalies, which are probably related to the submarine weathering process and detrital input. Noting also the variation of hydrodynamics conditions and confinement of the upstream part of the lagoon played a key role in changing the sediment origins.Thus, further investigation of REEs origin in the Oualidia lagoon sediment is required to identify their sources,provenances, and the factors controlling their spatial and vertical distributions. However, these results provide baseline data of occurring changes in REEs geochemical composition and constitute a typical study case to understand the link between sedimentary and geochemistry processes in a lagoonal ecosystem. 展开更多
关键词 Geochemical characterization rare earth elements SEDIMENT Oualidia lagoon
下载PDF
Effects of Rare Earth Lanthanum and Cerium on Key Enzyme Activi-ties of Soybean Nitrogen Metabolism
15
作者 Ren Hong-yu Zhang Shu-ying +3 位作者 Zhang Tian-ren Wang Wen-bo Li Hao-yang Zhang Xing-wen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2023年第1期28-36,共9页
In this study,the typical northeast soybean varieties Dongnong 42(high protein),Dongnong 47(high fat)and Dongnong 52(mixed-use)were used as experimental materials and planted in pots.Foliar spraying 100,150 and 200 mg... In this study,the typical northeast soybean varieties Dongnong 42(high protein),Dongnong 47(high fat)and Dongnong 52(mixed-use)were used as experimental materials and planted in pots.Foliar spraying 100,150 and 200 mg•L^(-1)LaCl_(3)solution,30,60 and 90 mg•L^(-1)CeCl_(3)solution and 40,60 and 70 mg•L^(-1)LaCl_(3)+CeCl_(3)mixed solution.To study the effects of different types and concentrations of rare earth on nitrate reductase activity,glutamine synthetase activity of soybean leaves and protein content of soybean grains.The results showed that spraying appropriate concentration of rare earth solution on the leaves could increase the activities of nitrate reductase and glutamine synthase in soybean functional leaves and the protein content of soybean grains.The protein content of the three types of soybean grains was significantly positively correlated with the activity of nitrate reductase and glutamine synthetase in the leaves. 展开更多
关键词 rare earth SOYBEAN nitrate reductase glutamine synthetase protein
下载PDF
Leaching characteristics of ion-adsorption type rare earths ore with magnesium sulfate 被引量:26
16
作者 肖燕飞 陈迎迎 +4 位作者 冯宗玉 黄小卫 黄莉 龙志奇 崔大立 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3784-3790,共7页
Magnesium sulfate was proposed to be leaching agent to deal with the ion-adsorption type rare earths ore to reduce or even eliminate ammonia?nitrogen emissions. The effects of temperature, particle size and stirring s... Magnesium sulfate was proposed to be leaching agent to deal with the ion-adsorption type rare earths ore to reduce or even eliminate ammonia?nitrogen emissions. The effects of temperature, particle size and stirring speed on rare earth leaching process and the leaching behaviors of the single rare earth element were investigated in order to reveal the rare earth leaching characteristics. Besides, the comparison of leaching effects between magnesium sulfate and ammonium sulfate was also studied. The results showed that the rare earth leaching process could be well described with inner diffusion control model and the apparent activation energy was 9.48 kJ/mol. The leaching behaviors of the single rare earth element were brought into correspondence with rare earths. Moreover, when the concentration of leaching agent was 0.20 mol/L, the rare earth leaching efficiency could all reach above 95% and the leaching efficiency of aluminum impurities could be restrained by 10% using magnesium sulfate compared with ammonium sulfate. 展开更多
关键词 rare earth leaching agent kinetics magnesium sulfate ion-adsorption type rare earths ore
下载PDF
Column leaching process of rare earth and aluminum from weathered crust elution-deposited rare earth ore with ammonium salts 被引量:18
17
作者 何正艳 张臻悦 +4 位作者 余军霞 徐志高 徐源来 周芳 池汝安 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期3024-3033,共10页
In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the... In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the chromatographic plate theory. Theresults show that a higher initial ammonium concentration in a certain range can enhance the mass transfer process. pH of leachingagent in the range of 2 to 8 almost has no effect on the mass transfer efficiency of RE, but plays a positive role in the mass transferefficiency of Al under strong acidic condition (pH〈4). There is an optimum flow rate that makes the highest mass transfer efficiency.The optimum leaching condition of RE is the leaching agent pH of 4?8, ammonium concentration of 0.4 mol/L and flow rate of0.5 mL/min. The mass transfer efficiencies of RE and Al both follow the order: (NH4)2SO4〈NH4Cl〈NH4NO3, implying thecomplexing ability of anion. 展开更多
关键词 column leaching process weathered crust elution-deposited rare earth ore rare earth ALUMINUM ammonium salt MASSTRANSFER
下载PDF
Study of the Electronic Structure and Optical Properties of Rare Earth Luminescent Materials
18
作者 Chengxi Zhang 《Journal of Materials Science and Chemical Engineering》 2023年第10期8-18,共11页
Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properti... Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properties of rare earth luminescent materials, with the goal of uncovering their importance in luminescence mechanisms and applications. Through theoretical calculations and experimental methods, we conducted in-depth analyses on materials composed of various rare earth elements. Regarding electronic structure, we utilized computational techniques such as density functional theory to investigate the band structure, valence state distribution, and electronic density of states of rare earth luminescent materials. The results indicate that the electronic structural differences among different rare earth elements notably influence their luminescence performance, providing crucial clues for explaining the luminescence mechanism. In terms of optical properties, we systematically examined the material’s optical behaviors through fluorescence spectroscopy, absorption spectroscopy, and other experimental approaches. We found that rare earth luminescent materials exhibit distinct absorption and emission characteristics at different wavelengths, closely related to the transition processes of their electronic energy levels. Furthermore, we studied the influence of varying doping concentrations and impurities on the material’s optical properties. Experimental outcomes reveal that appropriate doping can effectively regulate the emission intensity and wavelength, offering greater possibilities for material applications. In summary, this study comprehensively analyzed the electronic structure and optical properties of rare earth luminescent materials, providing deep insights into understanding their luminescence mechanisms and potential value in optoelectronic applications. In the future, these research findings will serve as crucial references for the technological advancement in fields such as LEDs, lasers, and bioimaging. 展开更多
关键词 rare earth Luminescent Materials Electronic Structure Optical Properties Luminescence Mechanism Prospects for Applications
下载PDF
Correlation Evaluation of Ion Adsorption-Based Rare Earth Leaching Performance Based on Zeta Potential Drop Leaching
19
作者 Xunhe Li Zhengxiong Ding +3 位作者 Sengbiao Zeng Yanzhu Liu Dongping Li Yongxiu Li 《Journal of Materials Science and Chemical Engineering》 2023年第11期28-47,共20页
Rare earth elements are indispensable raw materials for advanced aero-engines, special optical materials, and high-performance electronic products. With the development of the social economy, the global demand for rar... Rare earth elements are indispensable raw materials for advanced aero-engines, special optical materials, and high-performance electronic products. With the development of the social economy, the global demand for rare earth resources is increasing, and rare earths have become a key metal for the development of new industries and frontier technologies that are highly valued both at home and abroad. Ion-adsorbed rare earth ores are an important source of rare earths, so the efficient green leaching of ion-adsorbed rare earths is important. Researchers found that the selection of an efficient green leaching agent for ion-adsorbed rare earths is based on the zeta potential of tailing clay minerals in addition to leaching efficiency, and both zeta potential and leaching ion concentration are related to mineral acidity and alkalinity, and the pH of tailing water suspension is a direct indicator of environmental water quality requirements. Therefore, the efficiency of the leaching process is closely integrated with the environmental evaluation, and the characteristics and correlation of the changes in zeta potential, pH, conductivity and pollutant concentration of the pulp of clay mineral content during the leaching process of ore leaching and tailings aqueous electrolyte solution leaching are studied by evaluating the leaching system, and a set of correlation leaching efficiency and environmental impact evaluation method is established based on the results of the above analysis, which is of scientific development of ion adsorption rare earth resources. It has important theoretical significance and practical application value. 展开更多
关键词 Ion Adsorption rare earth Ph Value Zeta Potential the Leaching Efficiency
下载PDF
Preparation of Rare Earth Hydroxide and Oxide Nanoparticles by Precipitation Method 被引量:8
20
作者 Xiangting DONG Guangyan HONG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第4期555-558,共4页
A series of rare earth hydroxide and oxide nanoparticles have been prepared by precipitation method with alcohol as the dispersive and protective reagent. Transmission electron microscope (TEM) images indicate that ... A series of rare earth hydroxide and oxide nanoparticles have been prepared by precipitation method with alcohol as the dispersive and protective reagent. Transmission electron microscope (TEM) images indicate that the particles are spherical in shape and smaller than 100 nm in size. The crystallite sizes of cubic Ln2O3 have lanthanide shrinking effect, while average crystal lattice distortion rates possess lanthanide swelling effect. The diffraction peak intensity of heavy rare earth oxide nanometer powders is remarkably stronger than that of light rare earth oxide nanometer powders. The variation of diffraction intensity with atomic number presents an inverted W type, forming a double peak structure. Fourier transform infrared (FTIR) spectrums reveal that Ln2O3 nanopowders have higher surface activity than that of ordinary Ln2O3 powders. The UV-vis spectra show that Ln-O bond of these particles is slightly blue-shifted, and its absorption intensity decreases. 展开更多
关键词 rare earth rare earth hydroxide rare earth oxide NANOPARTICLE Precipitation method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部