Objective The cellular apoptosis susceptibility(CAS) protein plays a regulatory role in the induction of cell death in tumor cells. The objective of this study was to investigate the association of the expression of C...Objective The cellular apoptosis susceptibility(CAS) protein plays a regulatory role in the induction of cell death in tumor cells. The objective of this study was to investigate the association of the expression of CAS protein with HBV infection in the development of HCC. Methods The expression level of CAS was measured with immunohistochemistry. The occurrence of HBs Ag, HBe Ag and HBV DNA in HCC were concurrently examined with immunohistochemistry and in situ hybridization, respectively. Results The results showed that the CAS protein was detected in 86%(43/50), 70%(7/10), 15%(3/20) and none(0/20) of livers from patients with HCC, cholangiocarcinoma, cirrhosis and hepatitis, respectively. Furthermore, the level of CAS protein was higher in poorly differentiated tumors than moderately or well differentiated HCC. Interestingly, the CAS was stained significantly stronger in HBV-infected HCC than in non-HBV infected tissues(P < 0.01). Conclusions The expression of CAS is facilitated by HBV infection in HCC, suggesting that CAS might be a prognostic marker and a putative therapeutic target for HCC.展开更多
Objective: To investigate the mechanism of moxibustion in regulating cellular apoptosis in rat's precancerous lesion of primary hepatocellular carcinoma (HCC). Methods: Seventy-four rats were randomly allocated t...Objective: To investigate the mechanism of moxibustion in regulating cellular apoptosis in rat's precancerous lesion of primary hepatocellular carcinoma (HCC). Methods: Seventy-four rats were randomly allocated to normal group, model group and moxibustion group, and the diethylic nitrosamine (DEN) was used to establish HCC model. Moxibustion with moxa cone which is as big as a grain of wheat was performed on acupoint Zusanli (ST 36), 3 cones for each acupoint and 0.5 mg for each cone, the treatment was given once a day, totally 16 weeks. Then the changes in the body weight, liver weight and thymus weight, a morphological change in the liver tissue and changes in γ-GT and GST were observed; Immunohistochemical staining method was adopted to observe the tendency of changes in relevant apoptosis genes such as C-myc, N-ras and mutant type P53, and the influence of moxibustion on cell cycle modulation genes such as cyclinD1, CDK4 and pl6. Results: Moxibustion could reduce the activities of γ-GT and GST in the blood, obviously decrease the protein expression of relevant apoptosis genes such as C-myc, N-ras and mutant type P53 and markedly inhibit the over-expression of relevant cell cycle modulation genes such as cyclinD1 and CDK4 and the mutation of cell cycle modulation gene pl 6. Conclusion: Moxibustion might play a certain role in relieving HCC precancerous lesion and its action mechanism might be related to the regulation on partial apoptosis genes.展开更多
This study sought to investigate the effects of Purendan superfine powder comprised of Momordica charantia, Radix Ginseng, and Radix Salviae Miltiorrhiae on neuronal apoptosis and expression of bcl-2, bax, and caspase...This study sought to investigate the effects of Purendan superfine powder comprised of Momordica charantia, Radix Ginseng, and Radix Salviae Miltiorrhiae on neuronal apoptosis and expression of bcl-2, bax, and caspase-3, which are retinal apoptosis-associated factors in rats with diabetes mellitus induced by continuous intraperitoneal injection of streptozotocin. The results showed that Purendan superfine powder could upregulate the expression of bcl-2 protein and mRNA, and downregulate the expression of bax and caspase-3 in the retina of diabetes mellitus rats. In addition, Purendan superfine powder was shown to reduce the number of apoptotic neurons. Our experimental findings indicate that Purendan superfine powder can inhibit neuronal apoptosis in the retina of diabetes mellitus rats and has protective effects on diabetic retinopathy.展开更多
BACKGROUND:Pharmacological studies have demonstrated that compound preparation Tongqiao Jiannao capsules composed of Zexie, Baizhu, Honghua, Danshen, and Shexiang can supplement qi, activate blood circulation, reliev...BACKGROUND:Pharmacological studies have demonstrated that compound preparation Tongqiao Jiannao capsules composed of Zexie, Baizhu, Honghua, Danshen, and Shexiang can supplement qi, activate blood circulation, relieve blood stasis, induce resuscitation for alleviating pain, relieve pain, and dilate blood vessels. OBJECTIVE: To observe the effects of Tongqiao Jiannao capsules on the levels of the anti-apoptotic protein Bcl-2 and the proapoptotic protein Bax, and verify the mechanism of action. DESIGN, TIME AND SETTING: Randomized, controlled animal experiment, performed in the Laboratory of Biochemistry and Molecular Biology, Shanxi Medical University between June 2001 and December 2002. MATERIALS: The right middle cerebral arteries of 24 healthy adult Sprague Dawley rats were occluded by the suture method. The primary Chinese herbal medicinal ingredients of Tongqiao Jiannao capsules are Zexie, Baizhu, Honghua, Danshen, and Shexiang, which were purchased from Shanxi Provincial Medicinal Material Company, China, and prepared into condensed granules in the Room for Chinese Herbal Medicine Preparation, Second Hospital, Shanxi Medical University. Bcl-2 and Bax immunohistochemical staining kits, a 3,3-diaminobenzidine(DAB) kit, and an in situ apoptosis detection kit were purchased from Wuhan Boster Bioengineering Co., Ltd., China. METHODS: Twenty-four rats were randomly and evenly divided into three groups: (1) sham-operated rats in which sutures were inserted and immediately pulled out; (2) Tongqiao Jiannao capsule-treated rats that were intragastrically administered 6.5 g/kg/d Tongqiao Jiannao capsule preparation for seven successive days prior to middle cerebral artery occlusion (MCAO); and (3) MCAO rats without any other treatments. MAIN OUTCOME MEASURES: The levels of neural cell apoptosis and Bcl-2 and Bax proteins at 24 hours post-surgery. RESULTS: In the MCAO group, the numbers of apoptotic cells and Bax-positive cells were significantly increased, while the numbers of Bcl-2-positive cells were slightly decreased compared with the sham-operated group. Bcl-2- and Bax-positive cells and apoptotic cells were primarily distributed in the ischemic penumbra. In the Tongqiao Jiannao capsule-treated group, neuronal apoptosis was inhibited, and the number of Bcl-2-positive cells was significantly increased (P 〈 0.01), while the number of Bax-positive cells was significantly decreased (P 〈 0.01), compared with the MCAO group. CONCLUSION: Tongqiao Jiannao capsules elevated Bcl-2 expression, lowered Bax expression, and inhibited cellular apoptosis during the process of cerebral ischemia/reperfusion injury.展开更多
This study demonstrated that brain areas surrounding the site of hematoma following intracerebral hemorrhage are characterized by significantly increased apoptosis and expression of neurotrophin receptor p75 and sorti...This study demonstrated that brain areas surrounding the site of hematoma following intracerebral hemorrhage are characterized by significantly increased apoptosis and expression of neurotrophin receptor p75 and sortilin. However, as detected by terminal deoxynucleotidyl transferase dUTP nick end labeling and immunohistochemical staining, there was no significant change in nerve growth factor precursor expression levels. The appearance of neurotrophin receptor p75 expressing cells was positively correlated with cells that were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling. These findings confirm that the nerve growth factor precursor-neurotrophin receptor p75-sortilin heterotrimeric complex-mediated apoptosis pathway may play an important role in cellular apoptosis following intracerebral hemorrhage.展开更多
Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in...Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice(Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1(HO-1), nuclear factor erythroid 2-related factor 2(Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA(20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor(10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3 K/Akt signaling pathway inhibitor LY294002(10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3 K/Akt signaling pathway.展开更多
Hypoxic-ischemic encephalopathy(HIE) is a disease that occurs when the brain is subjected to hypoxia,resulting in neuronal death and neurological deficits,with a poor prognosis.The mechanisms underlying hypoxic-isch...Hypoxic-ischemic encephalopathy(HIE) is a disease that occurs when the brain is subjected to hypoxia,resulting in neuronal death and neurological deficits,with a poor prognosis.The mechanisms underlying hypoxic-ischemic brain injury include excitatory amino acid release,cellular proteolysis,reactive oxygen species generation,nitric oxide synthesis,and inflammation.The molecular and cellular changes in HIE include protein misfolding,aggregation,and destruction of organelles.The apoptotic pathways activated by ischemia and hypoxia include the mitochondrial pathway,the extrinsic Fas receptor pathway,and the endoplasmic reticulum stress-induced pathway.Numerous treatments for hypoxic-ischemic brain injury caused by HIE have been developed over the last half century.Hypothermia,xenon gas treatment,the use of melatonin and erythropoietin,and hypoxic-ischemic preconditioning have proven effective in HIE patients.Molecular chaperones are proteins ubiquitously present in both prokaryotes and eukaryotes.A large number of molecular chaperones are induced after brain ischemia and hypoxia,among which the heat shock proteins are the most important.Heat shock proteins not only maintain protein homeostasis; they also exert anti-apoptotic effects.Heat shock proteins maintain protein homeostasis by helping to transport proteins to their target destinations,assisting in the proper folding of newly synthesized polypeptides,regulating the degradation of misfolded proteins,inhibiting the aggregation of proteins,and by controlling the refolding of misfolded proteins.In addition,heat shock proteins exert anti-apoptotic effects by interacting with various signaling pathways to block the activation of downstream effectors in numerous apoptotic pathways,including the intrinsic pathway,the endoplasmic reticulum-stress mediated pathway and the extrinsic Fas receptor pathway.Molecular chaperones play a key role in neuroprotection in HIE.In this review,we provide an overview of the mechanisms of HIE and discuss the various treatment strategies.Given their critical role in the disease,molecular chaperones are promising therapeutic targets for HIE.展开更多
Schisandrin B(Sch B),the major lignans isolated from Schisandra chinensis,exerts high arntioxidant activities.However,it is unknown whether SchB protects neural cell against Aβinduced cellular apoptosis.This study ai...Schisandrin B(Sch B),the major lignans isolated from Schisandra chinensis,exerts high arntioxidant activities.However,it is unknown whether SchB protects neural cell against Aβinduced cellular apoptosis.This study aims to investigate the neuroprotective action of SchB on cellular model of AD,and revealed the underlying mechanisms.展开更多
Graphene possesses unique physical and chemical properties, which have inspired a wide range of potential biomedical applications. However, little is known about the adverse effects of graphene on the human body and e...Graphene possesses unique physical and chemical properties, which have inspired a wide range of potential biomedical applications. However, little is known about the adverse effects of graphene on the human body and ecological environment. The purpose of our work is to make assessment on the toxicity of graphene oxide (GO) against human cell line (human bone marrow neuroblastoma cell line and human epithelial carcinoma cell line) and zebrafish (Danio rerio) by comparing the toxic effects of GO with its sister, multi-walled carbon nanotubes (MWNTs). The results show that GO has a moderate toxicity to organisms since it can induce minor (about 20%) cell growth inhibition and slight hatching delay of zebrafish embryos at a dosage of 50 mg/L, but did not result in significant increase of apoptosis in embryo, while MWNTs exhibit acute toxicity leading to a strong inhibition of cell proliferation and serious morphological defects in developing embryos even at relatively low concentration of 25 mg/L. The distinctive toxicity of GO and MWNTs should be ascribed to the different models of interaction between nanomaterials and organisms, which arises from the different geometric structures of nanomaterials. Collectively, our work suggests that GO does actual toxicity to organisms posing potential environmental risks and the result is also shedding light on the geometrical structure-dependent toxicity of graphitic nanomaterials.展开更多
文摘Objective The cellular apoptosis susceptibility(CAS) protein plays a regulatory role in the induction of cell death in tumor cells. The objective of this study was to investigate the association of the expression of CAS protein with HBV infection in the development of HCC. Methods The expression level of CAS was measured with immunohistochemistry. The occurrence of HBs Ag, HBe Ag and HBV DNA in HCC were concurrently examined with immunohistochemistry and in situ hybridization, respectively. Results The results showed that the CAS protein was detected in 86%(43/50), 70%(7/10), 15%(3/20) and none(0/20) of livers from patients with HCC, cholangiocarcinoma, cirrhosis and hepatitis, respectively. Furthermore, the level of CAS protein was higher in poorly differentiated tumors than moderately or well differentiated HCC. Interestingly, the CAS was stained significantly stronger in HBV-infected HCC than in non-HBV infected tissues(P < 0.01). Conclusions The expression of CAS is facilitated by HBV infection in HCC, suggesting that CAS might be a prognostic marker and a putative therapeutic target for HCC.
文摘Objective: To investigate the mechanism of moxibustion in regulating cellular apoptosis in rat's precancerous lesion of primary hepatocellular carcinoma (HCC). Methods: Seventy-four rats were randomly allocated to normal group, model group and moxibustion group, and the diethylic nitrosamine (DEN) was used to establish HCC model. Moxibustion with moxa cone which is as big as a grain of wheat was performed on acupoint Zusanli (ST 36), 3 cones for each acupoint and 0.5 mg for each cone, the treatment was given once a day, totally 16 weeks. Then the changes in the body weight, liver weight and thymus weight, a morphological change in the liver tissue and changes in γ-GT and GST were observed; Immunohistochemical staining method was adopted to observe the tendency of changes in relevant apoptosis genes such as C-myc, N-ras and mutant type P53, and the influence of moxibustion on cell cycle modulation genes such as cyclinD1, CDK4 and pl6. Results: Moxibustion could reduce the activities of γ-GT and GST in the blood, obviously decrease the protein expression of relevant apoptosis genes such as C-myc, N-ras and mutant type P53 and markedly inhibit the over-expression of relevant cell cycle modulation genes such as cyclinD1 and CDK4 and the mutation of cell cycle modulation gene pl 6. Conclusion: Moxibustion might play a certain role in relieving HCC precancerous lesion and its action mechanism might be related to the regulation on partial apoptosis genes.
文摘This study sought to investigate the effects of Purendan superfine powder comprised of Momordica charantia, Radix Ginseng, and Radix Salviae Miltiorrhiae on neuronal apoptosis and expression of bcl-2, bax, and caspase-3, which are retinal apoptosis-associated factors in rats with diabetes mellitus induced by continuous intraperitoneal injection of streptozotocin. The results showed that Purendan superfine powder could upregulate the expression of bcl-2 protein and mRNA, and downregulate the expression of bax and caspase-3 in the retina of diabetes mellitus rats. In addition, Purendan superfine powder was shown to reduce the number of apoptotic neurons. Our experimental findings indicate that Purendan superfine powder can inhibit neuronal apoptosis in the retina of diabetes mellitus rats and has protective effects on diabetic retinopathy.
文摘BACKGROUND:Pharmacological studies have demonstrated that compound preparation Tongqiao Jiannao capsules composed of Zexie, Baizhu, Honghua, Danshen, and Shexiang can supplement qi, activate blood circulation, relieve blood stasis, induce resuscitation for alleviating pain, relieve pain, and dilate blood vessels. OBJECTIVE: To observe the effects of Tongqiao Jiannao capsules on the levels of the anti-apoptotic protein Bcl-2 and the proapoptotic protein Bax, and verify the mechanism of action. DESIGN, TIME AND SETTING: Randomized, controlled animal experiment, performed in the Laboratory of Biochemistry and Molecular Biology, Shanxi Medical University between June 2001 and December 2002. MATERIALS: The right middle cerebral arteries of 24 healthy adult Sprague Dawley rats were occluded by the suture method. The primary Chinese herbal medicinal ingredients of Tongqiao Jiannao capsules are Zexie, Baizhu, Honghua, Danshen, and Shexiang, which were purchased from Shanxi Provincial Medicinal Material Company, China, and prepared into condensed granules in the Room for Chinese Herbal Medicine Preparation, Second Hospital, Shanxi Medical University. Bcl-2 and Bax immunohistochemical staining kits, a 3,3-diaminobenzidine(DAB) kit, and an in situ apoptosis detection kit were purchased from Wuhan Boster Bioengineering Co., Ltd., China. METHODS: Twenty-four rats were randomly and evenly divided into three groups: (1) sham-operated rats in which sutures were inserted and immediately pulled out; (2) Tongqiao Jiannao capsule-treated rats that were intragastrically administered 6.5 g/kg/d Tongqiao Jiannao capsule preparation for seven successive days prior to middle cerebral artery occlusion (MCAO); and (3) MCAO rats without any other treatments. MAIN OUTCOME MEASURES: The levels of neural cell apoptosis and Bcl-2 and Bax proteins at 24 hours post-surgery. RESULTS: In the MCAO group, the numbers of apoptotic cells and Bax-positive cells were significantly increased, while the numbers of Bcl-2-positive cells were slightly decreased compared with the sham-operated group. Bcl-2- and Bax-positive cells and apoptotic cells were primarily distributed in the ischemic penumbra. In the Tongqiao Jiannao capsule-treated group, neuronal apoptosis was inhibited, and the number of Bcl-2-positive cells was significantly increased (P 〈 0.01), while the number of Bax-positive cells was significantly decreased (P 〈 0.01), compared with the MCAO group. CONCLUSION: Tongqiao Jiannao capsules elevated Bcl-2 expression, lowered Bax expression, and inhibited cellular apoptosis during the process of cerebral ischemia/reperfusion injury.
基金the Science and Technology Research and Development Program of Shaanxi Province, No. 2007K15-01
文摘This study demonstrated that brain areas surrounding the site of hematoma following intracerebral hemorrhage are characterized by significantly increased apoptosis and expression of neurotrophin receptor p75 and sortilin. However, as detected by terminal deoxynucleotidyl transferase dUTP nick end labeling and immunohistochemical staining, there was no significant change in nerve growth factor precursor expression levels. The appearance of neurotrophin receptor p75 expressing cells was positively correlated with cells that were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling. These findings confirm that the nerve growth factor precursor-neurotrophin receptor p75-sortilin heterotrimeric complex-mediated apoptosis pathway may play an important role in cellular apoptosis following intracerebral hemorrhage.
基金supported by the National Natural Science Foundation of China,No.81571292(to XJZ)、81601152(to YY)the Natural Science Foundation of Hebei Province of China,No.H2017206338(to RC)
文摘Rosmarinic acid(RA) can elicit a neuroprotective effect against ischemic stroke, but the precise molecular mechanism remains poorly understood. In this study, an experimental ischemic stroke model was established in CD-1 mice(Beijing Vital River Laboratory Animal Technology, Beijing, China) by occluding the right middle cerebral artery for 1 hour and allowing reperfusion for 24 hours. After intraperitoneally injecting model mice with 10, 20, or 40 mg/kg RA, functional neurological deficits were evaluated using modified Longa scores. Subsequently, cerebral infarct volume was measured using TTC staining and ischemic brain tissue was examined for cell apoptosis with TUNEL staining. Superoxide dismutase activity and malondialdehyde levels were measured by spectrophometry. Expression of heme oxygenase-1(HO-1), nuclear factor erythroid 2-related factor 2(Nrf2), Bcl-2, Bax, Akt, and phospho-Ser473 Akt proteins in ischemic brain tissue was detected by western blot, while mRNA levels of Nrf2, HO-1, Bcl-2, and Bax were analyzed using real time quantitative PCR. In addition, HO-1 enzyme activity was measured spectrophotometrically. RA(20 and 40 mg/kg) greatly improved neurological function, reduced infarct volume, decreased cell apoptosis, upregulated Bcl-2 protein and mRNA expression, downregulated Bax protein and mRNA expression, increased HO-1 and Nrf2 protein and mRNA expression, increased superoxide dismutase activity, and decreased malondialdehyde levels in ischemic brain tissue of model mice. However, intraperitoneal injection of a HO-1 inhibitor(10 mg/kg zinc protoporphyrin IX) reversed the neuroprotective effects of RA on HO-1 enzyme activity and Bcl-2 and Bax protein expression. The PI3 K/Akt signaling pathway inhibitor LY294002(10 mM) inhibited Akt phosphorylation, as well as Nrf2 and HO-1 expression. Our findings suggest that RA has anti-oxidative and anti-apoptotic properties that protect against ischemic stroke by a mechanism involving upregulation of Nrf2 and HO-1 expression via the PI3 K/Akt signaling pathway.
文摘Hypoxic-ischemic encephalopathy(HIE) is a disease that occurs when the brain is subjected to hypoxia,resulting in neuronal death and neurological deficits,with a poor prognosis.The mechanisms underlying hypoxic-ischemic brain injury include excitatory amino acid release,cellular proteolysis,reactive oxygen species generation,nitric oxide synthesis,and inflammation.The molecular and cellular changes in HIE include protein misfolding,aggregation,and destruction of organelles.The apoptotic pathways activated by ischemia and hypoxia include the mitochondrial pathway,the extrinsic Fas receptor pathway,and the endoplasmic reticulum stress-induced pathway.Numerous treatments for hypoxic-ischemic brain injury caused by HIE have been developed over the last half century.Hypothermia,xenon gas treatment,the use of melatonin and erythropoietin,and hypoxic-ischemic preconditioning have proven effective in HIE patients.Molecular chaperones are proteins ubiquitously present in both prokaryotes and eukaryotes.A large number of molecular chaperones are induced after brain ischemia and hypoxia,among which the heat shock proteins are the most important.Heat shock proteins not only maintain protein homeostasis; they also exert anti-apoptotic effects.Heat shock proteins maintain protein homeostasis by helping to transport proteins to their target destinations,assisting in the proper folding of newly synthesized polypeptides,regulating the degradation of misfolded proteins,inhibiting the aggregation of proteins,and by controlling the refolding of misfolded proteins.In addition,heat shock proteins exert anti-apoptotic effects by interacting with various signaling pathways to block the activation of downstream effectors in numerous apoptotic pathways,including the intrinsic pathway,the endoplasmic reticulum-stress mediated pathway and the extrinsic Fas receptor pathway.Molecular chaperones play a key role in neuroprotection in HIE.In this review,we provide an overview of the mechanisms of HIE and discuss the various treatment strategies.Given their critical role in the disease,molecular chaperones are promising therapeutic targets for HIE.
文摘Schisandrin B(Sch B),the major lignans isolated from Schisandra chinensis,exerts high arntioxidant activities.However,it is unknown whether SchB protects neural cell against Aβinduced cellular apoptosis.This study aims to investigate the neuroprotective action of SchB on cellular model of AD,and revealed the underlying mechanisms.
基金supported by the National Natural Science Foundation of China (21035005)the Doctoral Program Foundation of Institutions of Higher Education of China (20115301120002)the Natural Science Foundation of Yunnan Province of China (2011FB007)
文摘Graphene possesses unique physical and chemical properties, which have inspired a wide range of potential biomedical applications. However, little is known about the adverse effects of graphene on the human body and ecological environment. The purpose of our work is to make assessment on the toxicity of graphene oxide (GO) against human cell line (human bone marrow neuroblastoma cell line and human epithelial carcinoma cell line) and zebrafish (Danio rerio) by comparing the toxic effects of GO with its sister, multi-walled carbon nanotubes (MWNTs). The results show that GO has a moderate toxicity to organisms since it can induce minor (about 20%) cell growth inhibition and slight hatching delay of zebrafish embryos at a dosage of 50 mg/L, but did not result in significant increase of apoptosis in embryo, while MWNTs exhibit acute toxicity leading to a strong inhibition of cell proliferation and serious morphological defects in developing embryos even at relatively low concentration of 25 mg/L. The distinctive toxicity of GO and MWNTs should be ascribed to the different models of interaction between nanomaterials and organisms, which arises from the different geometric structures of nanomaterials. Collectively, our work suggests that GO does actual toxicity to organisms posing potential environmental risks and the result is also shedding light on the geometrical structure-dependent toxicity of graphitic nanomaterials.