The improved Intermig impeller has been used in the seed precipitation tank in China, which could enhance the mixing and suspension of Al(OH)3 particles and the power consumption declined largely. The flow field, soli...The improved Intermig impeller has been used in the seed precipitation tank in China, which could enhance the mixing and suspension of Al(OH)3 particles and the power consumption declined largely. The flow field, solids hold-up, cloud height, just off-bottom speed and power consumptions were investigated in solid-liquid mixing system with this new type of impeller by CFD and water experiment methods. Compared with the standard Intermig impeller, the improved one coupled with specially sloped baffles could promote the fluid circulation, create better solids suspension and consume less power. Besides lower impeller off-bottom clearance is good for solid suspension and distribution. The just-off-bottom speed was also determined by a power number criterion. Meanwhile, the predicted results were in good agreement with the experimental data.展开更多
At present, most commercial computer-aided manufacturing (CAM) systems are deficient in efficiency and performances on generating tool path during machining impellers. To solve the problem, this article develops a s...At present, most commercial computer-aided manufacturing (CAM) systems are deficient in efficiency and performances on generating tool path during machining impellers. To solve the problem, this article develops a special software to plan cutting path for ruled surface impellers. An approximation algorithm to generate cutting path for machining integral ruled surface impellers is proposed. By fitting sampling data points of an impeller blade into a curve, a model of ruled surface blade of an impeller is built up. Furthermore, by calculating the points where the cutter axis vector intersects the free-form hub surface of an impeller, problems about, for instance, the ambiguity in calculation and machining the wide blade surface with a short flute cutter are solved. Finally, an integral impeller cutting path is planned by way of an integrated cutter location control algorithm. Simulation and machining tests with an impeller are performed on a 5-axis computer numerically controlled (CNC) mill machine, which shows the feasibility of the proposed algorithm.展开更多
An automatic aerodynamic optimization design system for centrifugal compressor impellers is developed. The system utilizes the combined optimization of blade profiles and meridional geometries. In the construction of ...An automatic aerodynamic optimization design system for centrifugal compressor impellers is developed. The system utilizes the combined optimization of blade profiles and meridional geometries. In the construction of objective functions, non-design point performances are considered to realize the performance optimization in whole work ranges of the impeller. An impeller with one row of split blades is redesigned using the proposed optimization system. Results show that for the optimal impeller, the efficiency is obviously improved in the whole mass flow ranges, while the total pressure ratio hardly varies.展开更多
The mixing process in a stirred tank of 0.476 m diameter with single, dual and triple 3-narrow blade hydrofoil CBY impellers was numerically simulated by using computational fluid dynamics (CFD) package FLU-ENT6.1. Th...The mixing process in a stirred tank of 0.476 m diameter with single, dual and triple 3-narrow blade hydrofoil CBY impellers was numerically simulated by using computational fluid dynamics (CFD) package FLU-ENT6.1. The multi-reference frame (MRF) and standard k-ε turbulent model were used in the simulation. The shaft power and the mixing time predicted by CFD were in good agreement with the experiment. The effects of tracer feeding and detecting positions on mixing time were investigated. The results are of importance to the optimum design of industrial stirred tank/reactors.展开更多
The influence of solid particles size,density and loading on the critical gas-inducing impeller speed was investigated in a gas–liquid–solid stirring tank equipped with a hollow Rushton impeller.Three types of solid...The influence of solid particles size,density and loading on the critical gas-inducing impeller speed was investigated in a gas–liquid–solid stirring tank equipped with a hollow Rushton impeller.Three types of solid particles,hollow glass beads with diameters of 300 μm,200 μm,100 μm,and 60 μm,silica gel and desalting resin,were used.It was found that the adding solid particles would change the critical impeller speed.For hollow glass beads and silica gel,whose relative densities were less than or equal to 1.5,the critical impeller speeds increased with the solid loading before reaching the maximum values,and then decreased to a value even lower than that without added solids.The size of the solids also had apparent influence on the critical impeller speed,and larger solid particles correspond to a smaller critical impeller speed.The experimental data also showed that the gasinducing was beneficial to the suspension of the solid particles.展开更多
Characteristics of the liquid flow were studied in the impeller region for an unbaffied vessel agitated with an angularly oscillating impeller whose rotation proceeds while periodically reversing its direction at the ...Characteristics of the liquid flow were studied in the impeller region for an unbaffied vessel agitated with an angularly oscillating impeller whose rotation proceeds while periodically reversing its direction at the set angle, namely, rotating unsteadily with sinusoidal variation of the set amplitude. Measurement of the velocity of the liquid flow was performed, abreast of that of the torque of the shaft attached with the impeller. A disk turbine impeller with six flat blades was used in angular oscillation mode at the different amplitudes. The power characteristics were analyzed with the power number during one cycle of the angular oscillation consisting of a process for the impeller to stop and to reverse and that to rotate with a certain acceleration-deceleration in a uniform orientation. The power number in the process for the impeller to rotate exhibited slightly lower values compared with that of the identical design of impeller used in unidirectional rotation mode in a fully baffled vessel, being higher values in its process to stop and to reverse. Under such an operating condition in the amplitude, a time series of images was analyzed by particle tracking velocimetry (PTV) to characterize the fluctuation components of the velocities of the circumferential and radial flows inside the impeller rotational region. The impeller in its rotation process produced flows having a relatively large turbulence, independent of the amplitude condition. For the radial flow relating to the discharge flow, which contributes to transport of the turbulence throughout the vessel, operation at higher amplitude was clarified to be successful.展开更多
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relativ...Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.展开更多
The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the sti...The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the stirred tank, such as gas cavity andaccumulation of gas at the two sides of wall baffles, can be capturedby the simulation. The simulated results agree well with availableexperimental data. Since the improved inner-outer iterative algorithmdemands on empirical formula and experimental data for the impellerregion, and the approach seems generally applicable for simulatinggas-liquid stirred tanks.展开更多
The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces...The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has signif- icant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and inte- grated finishing and strengthening technologies and dis- cusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.展开更多
The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and importa...The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump.展开更多
Corrosion failure,especially stress corrosion cracking and corrosion fatigue,is the main cause of centrifugal compressor impeller failure.And it is concealed and destructive.This paper summarizes the main theories of ...Corrosion failure,especially stress corrosion cracking and corrosion fatigue,is the main cause of centrifugal compressor impeller failure.And it is concealed and destructive.This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments,and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution(AD),the hydrogen-induced cracking(HIC),and the combined AD and HIC mechanisms.The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking.The effects of stress ratio,loading frequency,and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized.The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments,which contain sulfide,chlorides,and carbonate,are analyzed.The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments.The current research methods for centrifugal compressor impeller corrosion failure are analyzed.Physical analysis,numerical simulation,and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.展开更多
Particle Image Velocimetry (PIV) has been used to investigate turbulence characteristics in a 0.48 m diameter stirred vessel filled to a liquid height ( H = 1.4T ) of 0.67 m. The agitator had dual Rushton impeller...Particle Image Velocimetry (PIV) has been used to investigate turbulence characteristics in a 0.48 m diameter stirred vessel filled to a liquid height ( H = 1.4T ) of 0.67 m. The agitator had dual Rushton impellers of 0.19 m diameter ( D = 0.4T ). The developed flow patterns depend on the clearance of the lower impeller above the base of the vessel, the spacing between the two impellers, and the submergence of the upper impeller below the liq- uid surface. Their combinations can generate three basic flow patterns, named, parallel, merging and diverging flows. The results of velocity measurement show that the flow characteristics in the impeller jet flow region changes very little for different positions. Average velocity, trailing vortices and shear strain rate distributions for three flow patterns were measured by using PIV technique. The characteristics of trailing vortex and its trajectory were described in detail for those three flow patterns. Since the space-resolution of PIV can only reach the sub-grid rather than the Kolmogorov scale, a large-eddy PIV analysis has been used to estimate the distribution of the turbulent kinetic energy dissipation. Comparison of the distributions of turbulent kinetic energy and dissipation rate in merging flow shows that the highest turbulent kinetic energy and dissipation are both located in the vortex regions, but the maxima are at somewhat different lo- cations behind the blade. About 37% of the total energy is dissipated in dual impeller jet flow regions. The obtained distribution of shear strain rate for merging flow is similar to that of turbulence dissipation, with the shear strain rate around the trailing vortices much higher than in other areas.展开更多
The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achie...The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achieve the highest efficiency and the lowest headcoefficient followed by those with half-open impeller and open-impeller, and can obtain much easilystable head-capacity characrastic curve, while those with a half-open complex impeller can't. Thecharacteristic curve with a open impeller is almost constant horizontal line before droppingsharply. The results also show that the axial clearance between pump casing and impeller caninfluence greatly on the performance of centrifugal pumps.展开更多
Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to impro...Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.展开更多
Majority of non-Newtonian fluids are pseudoplastic with shear-thinning property, which means that the viscosity will be different in different parts of the stirred tank. In such mixing process, it is difficult to pred...Majority of non-Newtonian fluids are pseudoplastic with shear-thinning property, which means that the viscosity will be different in different parts of the stirred tank. In such mixing process, it is difficult to predict accurately the power consumption and mean shear rate for designing novel impeller. Metzner-Otto method is a widely accepted method to solve these questions in mixing non-Newtonian fluids. As a result, Metzner-Otto constant will become a key factor to achieve an optimum way of economical mixing. In this paper, taking glycerine and xanthan gum solutions as research system, the power consumption, stirred by the impeller composed of perturbed six-bent-bladed turbine (6PBT) with differently geometrical characteristics in a cylindrical vessel, is studied by means of computational fluid dynamics (CFD). The flow is modeled as laminar and a multiple reference frame (MRF) approach is used to solve the discretized equations of motion. In order to determine the capability of CFD to forecast the flow process, the torque test experiment is used to measure the glycerine solution power consumption. The theological properties of the xanthan gum solutions are determined by a Brookfleld rheometer. It is observed that the power consumption predicted by numerical simulation agrees well with those measured using torque experiment method in stirring glycerine solution, which validate the numerical model. Metzner-Otto constant is almost not correlated with the flow behavior index of pseudoplastic fluids. This paper establishes the complete correlations of power constant and Metzner-Otto constant with impeller geometrical characteristics through linear regression analysis, which provides the valuable instructions and references for accurately predicting the power consumption and mean shear rate of pseudoplastic fluids in laminar flow, comparatively.展开更多
Pressure fluctuation may cause high amplitude of vibration of double-suction centrifugal pumps, but the impact of impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments a...Pressure fluctuation may cause high amplitude of vibration of double-suction centrifugal pumps, but the impact of impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments are carried out for five impeller configurations with different stagger angles by using the same test rig system. Results show that the stagger angles exert negligible effects on the characteristics of head and efficiency. The distributions of pressure fluctuations are relatively uniform along the suction chamber wall, and the maximum pressure fluctuation amplitude is reached near the suction inlet tongue region. The pressure fluctuation characteristics are affected largely by impeller rotation, whose dominant frequencies include impeller rotation frequency and its harmonic frequencies, and half blade passage frequency. The stagger angle exerts a small effect on the pressure fluctuations in the suction chamber while a great effect on the pressure fluctuation in volute casing, especially on the aspect of decreasing the amplitude on blade passage frequency. Among the tested cases, the distribution of pressure fluctuations in the volute becomes more uniform than the other impeller configurations and the level of pressure fluctuation may be reduced by up to 50% when the impeller stagger angle is close to 24° or 360°.The impeller structure pattern needs to be taken into consideration during the design period, and the halfway staggered impeller is strongly recommended.展开更多
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating c...An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.展开更多
Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishi...Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k-ε, renormalization group k-ε, and Spalart-Allmars models, the Realizable k-ε model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller.展开更多
To improve the accuracy and reduce the calcu- lation cost for the inverse problem of centrifugal pump impeller, the new inverse method based on proper orthog- onal decomposition (POD) is proposed. The pump blade sha...To improve the accuracy and reduce the calcu- lation cost for the inverse problem of centrifugal pump impeller, the new inverse method based on proper orthog- onal decomposition (POD) is proposed. The pump blade shape is parameterized by quartic Bezier curve, and the initial snapshots is generated by introducing the perturbation of the blade shape control parameters. The internal flow field and its hydraulic performance is predicted by CFD method. The snapshots vector includes the blade shape parameter and the distribution of blade load. The POD basis for the snap- shots set are deduced by proper orthogonal decomposition. The sample vector set is expressed in terms of the linear combination of the orthogonal basis. The objective blade shape corresponding to the objective distribution of blade load is obtained by least square fit. The Iterative correction algorithm for the centrifugal pump blade inverse method based on POD is proposed. The objective blade load dis- tributions are corrected according to the difference of the CFD result and the POD result. The two dimensional and three dimensional blade calculation cases show that the proposed centrifugal pump blade inverse method based on POD have good convergence and high accuracy, and thecalculation cost is greatly reduced. After two iterations, the deviation of the blade load and the pump hydraulic perfor- mance are limited within 4.0% and 6.0% individually for most of the flow rate range. This paper provides a promising inverse method for centrifugal pump impeller, which will benefit the hydraulic optimization of centrifugal pump.展开更多
Using the multiple reference frames (MRF) impeller method, the three-dimensional non-Newtonian flow field generated by a double helical ribbon (DHR) impeller has been simulated. The velocity field calculated by th...Using the multiple reference frames (MRF) impeller method, the three-dimensional non-Newtonian flow field generated by a double helical ribbon (DHR) impeller has been simulated. The velocity field calculated by the numerical simulation was similar to the previous studies and the power constant agreed well with the experimental data. Three computational fluid dynamic (CFD) methods, labeled Ⅰ, Ⅱ and Ⅲ, were used to compute the Metzuer constant k5. The results showed that the calculated value from the slop method (method Ⅰ) was consistent with the experimental data. Method Ⅱ, which took the maximal circumference-average shear rate around the impeller as the effective shear rate to compute ks, also showed good agreement with the experiment. However, both methods suffer from the complexity of calculation procedures. A new method (method Ⅲ) was devised in this paper to use the area-weighted average viscosity around the impeller as the effective viscosity for calculating k5. Method Ⅲ showed both good accuracy and ease of use.展开更多
基金Projects(50974035,51074047)supported by the National Natural Science Foundation of ChinaProject(2010AA03A405)supported by the High-tech Research and Development Program of China
文摘The improved Intermig impeller has been used in the seed precipitation tank in China, which could enhance the mixing and suspension of Al(OH)3 particles and the power consumption declined largely. The flow field, solids hold-up, cloud height, just off-bottom speed and power consumptions were investigated in solid-liquid mixing system with this new type of impeller by CFD and water experiment methods. Compared with the standard Intermig impeller, the improved one coupled with specially sloped baffles could promote the fluid circulation, create better solids suspension and consume less power. Besides lower impeller off-bottom clearance is good for solid suspension and distribution. The just-off-bottom speed was also determined by a power number criterion. Meanwhile, the predicted results were in good agreement with the experimental data.
基金Key Development Program of Science and Technology of Heilongjiang Province, China (GB05A501)
文摘At present, most commercial computer-aided manufacturing (CAM) systems are deficient in efficiency and performances on generating tool path during machining impellers. To solve the problem, this article develops a special software to plan cutting path for ruled surface impellers. An approximation algorithm to generate cutting path for machining integral ruled surface impellers is proposed. By fitting sampling data points of an impeller blade into a curve, a model of ruled surface blade of an impeller is built up. Furthermore, by calculating the points where the cutter axis vector intersects the free-form hub surface of an impeller, problems about, for instance, the ambiguity in calculation and machining the wide blade surface with a short flute cutter are solved. Finally, an integral impeller cutting path is planned by way of an integrated cutter location control algorithm. Simulation and machining tests with an impeller are performed on a 5-axis computer numerically controlled (CNC) mill machine, which shows the feasibility of the proposed algorithm.
文摘An automatic aerodynamic optimization design system for centrifugal compressor impellers is developed. The system utilizes the combined optimization of blade profiles and meridional geometries. In the construction of objective functions, non-design point performances are considered to realize the performance optimization in whole work ranges of the impeller. An impeller with one row of split blades is redesigned using the proposed optimization system. Results show that for the optimal impeller, the efficiency is obviously improved in the whole mass flow ranges, while the total pressure ratio hardly varies.
文摘The mixing process in a stirred tank of 0.476 m diameter with single, dual and triple 3-narrow blade hydrofoil CBY impellers was numerically simulated by using computational fluid dynamics (CFD) package FLU-ENT6.1. The multi-reference frame (MRF) and standard k-ε turbulent model were used in the simulation. The shaft power and the mixing time predicted by CFD were in good agreement with the experiment. The effects of tracer feeding and detecting positions on mixing time were investigated. The results are of importance to the optimum design of industrial stirred tank/reactors.
基金Supported by the National Natural Science Foundation of China(51308215)
文摘The influence of solid particles size,density and loading on the critical gas-inducing impeller speed was investigated in a gas–liquid–solid stirring tank equipped with a hollow Rushton impeller.Three types of solid particles,hollow glass beads with diameters of 300 μm,200 μm,100 μm,and 60 μm,silica gel and desalting resin,were used.It was found that the adding solid particles would change the critical impeller speed.For hollow glass beads and silica gel,whose relative densities were less than or equal to 1.5,the critical impeller speeds increased with the solid loading before reaching the maximum values,and then decreased to a value even lower than that without added solids.The size of the solids also had apparent influence on the critical impeller speed,and larger solid particles correspond to a smaller critical impeller speed.The experimental data also showed that the gasinducing was beneficial to the suspension of the solid particles.
文摘Characteristics of the liquid flow were studied in the impeller region for an unbaffied vessel agitated with an angularly oscillating impeller whose rotation proceeds while periodically reversing its direction at the set angle, namely, rotating unsteadily with sinusoidal variation of the set amplitude. Measurement of the velocity of the liquid flow was performed, abreast of that of the torque of the shaft attached with the impeller. A disk turbine impeller with six flat blades was used in angular oscillation mode at the different amplitudes. The power characteristics were analyzed with the power number during one cycle of the angular oscillation consisting of a process for the impeller to stop and to reverse and that to rotate with a certain acceleration-deceleration in a uniform orientation. The power number in the process for the impeller to rotate exhibited slightly lower values compared with that of the identical design of impeller used in unidirectional rotation mode in a fully baffled vessel, being higher values in its process to stop and to reverse. Under such an operating condition in the amplitude, a time series of images was analyzed by particle tracking velocimetry (PTV) to characterize the fluctuation components of the velocities of the circumferential and radial flows inside the impeller rotational region. The impeller in its rotation process produced flows having a relatively large turbulence, independent of the amplitude condition. For the radial flow relating to the discharge flow, which contributes to transport of the turbulence throughout the vessel, operation at higher amplitude was clarified to be successful.
基金the National Natural Science Foundation of China (No.50576088), the Natural Science Foundation of Zhejiang Province (No.R503170) and the Doctoral Program Foundation of Ministry of Education (No.20030335009).
文摘Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump.
基金the National Natural Science Foundation of China (No. 29792074) and SINOPEC.
文摘The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the stirred tank, such as gas cavity andaccumulation of gas at the two sides of wall baffles, can be capturedby the simulation. The simulated results agree well with availableexperimental data. Since the improved inner-outer iterative algorithmdemands on empirical formula and experimental data for the impellerregion, and the approach seems generally applicable for simulatinggas-liquid stirred tanks.
基金Supported by Science Fund for Creative Research Groups of NSFC(51621064)National Natural Science Foundation of China(Grant No.51475074,11302043)the Fundamental Research Funds for the Central Universities(DUT15QY37)
文摘The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has signif- icant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and inte- grated finishing and strengthening technologies and dis- cusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.
基金supported by National Natural Science Foundation of China (Grant Nos. 51279069,51109093)Jiangsu Provincial Natural Science Foundation of China (Grant Nos. BK2011503,BK2011505)
文摘The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB013401)Visiting Scholar Funded Project of China Scholarship Council(Grant No.201308370116)+2 种基金Technological Innovation Project of General Administration of Quality Supervision,Inspection and Quarantine of China(Grant No.2011QK235)Technological Innovation Project of Weihai Municipal ScienceTechnology Bureau of China(Grant No.2012DXGJ22)
文摘Corrosion failure,especially stress corrosion cracking and corrosion fatigue,is the main cause of centrifugal compressor impeller failure.And it is concealed and destructive.This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments,and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution(AD),the hydrogen-induced cracking(HIC),and the combined AD and HIC mechanisms.The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking.The effects of stress ratio,loading frequency,and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized.The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments,which contain sulfide,chlorides,and carbonate,are analyzed.The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments.The current research methods for centrifugal compressor impeller corrosion failure are analyzed.Physical analysis,numerical simulation,and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.
基金Supported by the National Natural Science Foundation of China (20776008, 20821004) and the National Basic Research Program of China (2007CB714300).
文摘Particle Image Velocimetry (PIV) has been used to investigate turbulence characteristics in a 0.48 m diameter stirred vessel filled to a liquid height ( H = 1.4T ) of 0.67 m. The agitator had dual Rushton impellers of 0.19 m diameter ( D = 0.4T ). The developed flow patterns depend on the clearance of the lower impeller above the base of the vessel, the spacing between the two impellers, and the submergence of the upper impeller below the liq- uid surface. Their combinations can generate three basic flow patterns, named, parallel, merging and diverging flows. The results of velocity measurement show that the flow characteristics in the impeller jet flow region changes very little for different positions. Average velocity, trailing vortices and shear strain rate distributions for three flow patterns were measured by using PIV technique. The characteristics of trailing vortex and its trajectory were described in detail for those three flow patterns. Since the space-resolution of PIV can only reach the sub-grid rather than the Kolmogorov scale, a large-eddy PIV analysis has been used to estimate the distribution of the turbulent kinetic energy dissipation. Comparison of the distributions of turbulent kinetic energy and dissipation rate in merging flow shows that the highest turbulent kinetic energy and dissipation are both located in the vortex regions, but the maxima are at somewhat different lo- cations behind the blade. About 37% of the total energy is dissipated in dual impeller jet flow regions. The obtained distribution of shear strain rate for merging flow is similar to that of turbulence dissipation, with the shear strain rate around the trailing vortices much higher than in other areas.
基金This project is supported by National Natural Science Foundation of China (No.50105018) and Provincial Natural Science Foundation of Zhejiang of China (No.501119).
文摘The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achieve the highest efficiency and the lowest headcoefficient followed by those with half-open impeller and open-impeller, and can obtain much easilystable head-capacity characrastic curve, while those with a half-open complex impeller can't. Thecharacteristic curve with a open impeller is almost constant horizontal line before droppingsharply. The results also show that the axial clearance between pump casing and impeller caninfluence greatly on the performance of centrifugal pumps.
基金Supported by National Natural Science Foundation of China(Grant No.51109094)Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.
基金Supported by Shandong Provincial Science and Technology Development planning Program of China(Grant No.2013YD09007)Scientific Foundation of Qingdao University of Science and Technology of China
文摘Majority of non-Newtonian fluids are pseudoplastic with shear-thinning property, which means that the viscosity will be different in different parts of the stirred tank. In such mixing process, it is difficult to predict accurately the power consumption and mean shear rate for designing novel impeller. Metzner-Otto method is a widely accepted method to solve these questions in mixing non-Newtonian fluids. As a result, Metzner-Otto constant will become a key factor to achieve an optimum way of economical mixing. In this paper, taking glycerine and xanthan gum solutions as research system, the power consumption, stirred by the impeller composed of perturbed six-bent-bladed turbine (6PBT) with differently geometrical characteristics in a cylindrical vessel, is studied by means of computational fluid dynamics (CFD). The flow is modeled as laminar and a multiple reference frame (MRF) approach is used to solve the discretized equations of motion. In order to determine the capability of CFD to forecast the flow process, the torque test experiment is used to measure the glycerine solution power consumption. The theological properties of the xanthan gum solutions are determined by a Brookfleld rheometer. It is observed that the power consumption predicted by numerical simulation agrees well with those measured using torque experiment method in stirring glycerine solution, which validate the numerical model. Metzner-Otto constant is almost not correlated with the flow behavior index of pseudoplastic fluids. This paper establishes the complete correlations of power constant and Metzner-Otto constant with impeller geometrical characteristics through linear regression analysis, which provides the valuable instructions and references for accurately predicting the power consumption and mean shear rate of pseudoplastic fluids in laminar flow, comparatively.
基金Supported by National Natural Science Foundation of China (Grant Nos.51621061,51139007,51409247)National Science and Technology Support Project of China(Grant No.2015BAD20B01)
文摘Pressure fluctuation may cause high amplitude of vibration of double-suction centrifugal pumps, but the impact of impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments are carried out for five impeller configurations with different stagger angles by using the same test rig system. Results show that the stagger angles exert negligible effects on the characteristics of head and efficiency. The distributions of pressure fluctuations are relatively uniform along the suction chamber wall, and the maximum pressure fluctuation amplitude is reached near the suction inlet tongue region. The pressure fluctuation characteristics are affected largely by impeller rotation, whose dominant frequencies include impeller rotation frequency and its harmonic frequencies, and half blade passage frequency. The stagger angle exerts a small effect on the pressure fluctuations in the suction chamber while a great effect on the pressure fluctuation in volute casing, especially on the aspect of decreasing the amplitude on blade passage frequency. Among the tested cases, the distribution of pressure fluctuations in the volute becomes more uniform than the other impeller configurations and the level of pressure fluctuation may be reduced by up to 50% when the impeller stagger angle is close to 24° or 360°.The impeller structure pattern needs to be taken into consideration during the design period, and the halfway staggered impeller is strongly recommended.
基金the National Natural Science Foundation of China(50779069 and 90510007)the Start-up Scientific Research Foundation of China Agricultural University(2006021)the Beijing Natural Science Foundation(3071002).
文摘An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur- rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body- fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.
基金supported by National Natural Science Foundation of China(Grant No.51276213)Zhejiang Provincial Science and Technology Project of China(Grant No.2012R10001-07)
文摘Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k-ε, renormalization group k-ε, and Spalart-Allmars models, the Realizable k-ε model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller.
基金Supported by National Natural Science Foundation of China(Grant Nos.51469014,51676003)National Key Research and Development Program of China(Grant No.20016YFB0200901)
文摘To improve the accuracy and reduce the calcu- lation cost for the inverse problem of centrifugal pump impeller, the new inverse method based on proper orthog- onal decomposition (POD) is proposed. The pump blade shape is parameterized by quartic Bezier curve, and the initial snapshots is generated by introducing the perturbation of the blade shape control parameters. The internal flow field and its hydraulic performance is predicted by CFD method. The snapshots vector includes the blade shape parameter and the distribution of blade load. The POD basis for the snap- shots set are deduced by proper orthogonal decomposition. The sample vector set is expressed in terms of the linear combination of the orthogonal basis. The objective blade shape corresponding to the objective distribution of blade load is obtained by least square fit. The Iterative correction algorithm for the centrifugal pump blade inverse method based on POD is proposed. The objective blade load dis- tributions are corrected according to the difference of the CFD result and the POD result. The two dimensional and three dimensional blade calculation cases show that the proposed centrifugal pump blade inverse method based on POD have good convergence and high accuracy, and thecalculation cost is greatly reduced. After two iterations, the deviation of the blade load and the pump hydraulic perfor- mance are limited within 4.0% and 6.0% individually for most of the flow rate range. This paper provides a promising inverse method for centrifugal pump impeller, which will benefit the hydraulic optimization of centrifugal pump.
基金Supported by the Natural Science Foundation of Tianjin (07JCZDJC02600).
文摘Using the multiple reference frames (MRF) impeller method, the three-dimensional non-Newtonian flow field generated by a double helical ribbon (DHR) impeller has been simulated. The velocity field calculated by the numerical simulation was similar to the previous studies and the power constant agreed well with the experimental data. Three computational fluid dynamic (CFD) methods, labeled Ⅰ, Ⅱ and Ⅲ, were used to compute the Metzuer constant k5. The results showed that the calculated value from the slop method (method Ⅰ) was consistent with the experimental data. Method Ⅱ, which took the maximal circumference-average shear rate around the impeller as the effective shear rate to compute ks, also showed good agreement with the experiment. However, both methods suffer from the complexity of calculation procedures. A new method (method Ⅲ) was devised in this paper to use the area-weighted average viscosity around the impeller as the effective viscosity for calculating k5. Method Ⅲ showed both good accuracy and ease of use.