期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
Auxiliary Teeth Design to Reduce Short-Circuit Current in Permanent Magnet Generators 被引量:3
1
作者 Yong He Wenxiang Zhao +1 位作者 Hongyu Tang Jinghua Ji 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第3期198-205,共8页
In this paper,a new auxiliary teeth structure is proposed for fault-tolerant permanent magnet(PM)generators,which can reduce the short-circuit currents.Firstly,the short-circuit current and the phase to phase isolatio... In this paper,a new auxiliary teeth structure is proposed for fault-tolerant permanent magnet(PM)generators,which can reduce the short-circuit currents.Firstly,the short-circuit current and the phase to phase isolation of the fault-tolerant generator are analyzed briefly.Secondly,the auxiliary teeth structure is optimized to improve fault-tolerant capability.Then,the PM generators with different stator structures are compared to evaluate the proposed auxiliary teeth structure.Four critical generator parameters are investigated,i.e.back-electromotive forces,short-circuit currents,stator magneto motive force(MMF)harmonics,and torque performances.The results show that the proposed structure has better fault-tolerant capability than the conventional two-layer windings.Moreover,the stator MMF harmonics can be suppressed.Furthermore,the cogging torque and torque ripple can be suppressed by adopting the proposed structure.Finally,the simulated results are given to validate the theoretical analysis. 展开更多
关键词 Auxiliary teeth fault-tolerant generator magneto motive force TORQUE finite-element method permanent magnet generator
下载PDF
Prediction of the Inductance in a Synchronous Linear Permanent Magnet Generator
2
作者 Boel Ekergard Rafael Waters Mats Leijon 《Journal of Electromagnetic Analysis and Applications》 2011年第5期155-159,共5页
This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctanc... This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctance term, known from analytic calculations and finite element method simulations. With the inductance term identified, the voltage difference between the generator’s no load and load voltage can be calculated and an external circuit can be designed for optimal use of the generator. Two different operation intervals of the linear generator are considered and the results are discussed. The result indicates that time costly finite element simulations can be replaced with simple analytical calculations for a surface mounted permanent magnet linear generator. 展开更多
关键词 Wave Power Synchronous Linear permanent magnet generator Varying Inductance ABC of Frame Reference
下载PDF
Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy 被引量:3
3
作者 Esmaeil Ghaderi Hossein Tohidi Behnam Khosrozadeh 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期391-399,共9页
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th... The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG). 展开更多
关键词 Maximum power point tracking permanent magnet synchronous generator(PMSG) sliding mode control wind turbine
下载PDF
Design, Construction and Ocean Testing of Wave Energy Conversion System with Permanent Magnet Tubular Linear Generator 被引量:2
4
作者 陈中显 余海涛 +1 位作者 刘春元 洪立玮 《Transactions of Tianjin University》 EI CAS 2016年第1期72-76,共5页
In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with perman... In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with permanent magnet tubular linear generator (PMTLG) is proposed to convert ocean wave energy into electricity. The wave energy conversion system was installed in the Yellow Sea near Lianyungang, China. The ocean test re- suits indicate that it had dynamic and static performance, and obtained an expected amount of electricity. The calcu- lation result indicates the average output power was about 1 000 W, and the conversion efficiency from wave en- ergy into electricity was 1.4%. In addition, the wireless data communication, mechanics and oceanography were also discussed. 展开更多
关键词 ocean wave energy BUOY permanent magnet tubular linear generator ELECTRICITY
下载PDF
Analysis and Design of Surface Permanent Magnet Synchronous Motor and Generator 被引量:7
5
作者 Chengyuan He Thomas Wu 《CES Transactions on Electrical Machines and Systems》 CSCD 2019年第1期94-100,共7页
This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based o... This paper presents an analytical method to design the high-efficiency surface permanent magnet synchronous motor(SPMSM)or generator(SPMSG).The air-gap and permanent magnet size can be approximately determined based on our mathematics model,which is the most important part of SPMSM design.From our method,we can know that motor’s power out torque is related to the torque angle that we selected in our design and it affects the air-gap and permanent magnet size.If we choose a low torque angle,the motor or generator’s overload power handing capability will increase.The embrace value has a vital place in designing a motor or generator due to its effects on air gap flux density,cogging torque,efficiency and so on.In order to avoid the knee effect,the working point of the permanent magnet we selected in the design should be bigger than 0.5.The developed 36 slots,4 poles,surface mound permanent generator is proposed.The corresponding finite element analysis(FEA)model is built based on our design method.Structure optimization includes stator and rotor structure size,permanent magnet size,magnetic bridge and air gap length which are analyzed and simulated by ANSYS Maxwell 2D FEA.Thermal analysis is conducted,and the housing of the alternator is designed.The alternator prototype is fabricated and tested based on our design. 展开更多
关键词 initeelement analysis FABRICATION high-efficiency mathematic model surface permanent magnet synchronous motor or generator.
下载PDF
Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system 被引量:1
6
作者 Manal Messadi Adel Mellit +1 位作者 Karim Kemih Malek Ghanes 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期177-183,共7页
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make oper... This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. 展开更多
关键词 permanent magnet synchronous generator chaotic system genetic algorithm predictive control
原文传递
Design Optimization of a Self-circulated Hydrogen Cooling System for a PM Wind Generator Based on Taguchi Method
7
作者 Gaojia Zhu Yunhao Li Longnv Li 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期170-176,共7页
With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed s... With the continuous improvement of permanent magnet(PM)wind generators'capacity and power density,the design of reasonable and efficient cooling structures has become a focus.This paper proposes a fully enclosed self-circulating hydrogen cooling structure for a originally forced-air-cooled direct-drive PM wind generator.The proposed hydrogen cooling system uses the rotor panel supports that hold the rotor core as the radial blades,and the hydrogen flow is driven by the rotating plates to flow through the axial and radial vents to realize the efficient cooling of the generator.According to the structural parameters of the cooling system,the Taguchi method is used to decouple the structural variables.The influence of the size of each cooling structure on the heat dissipation characteristic is analyzed,and the appropriate cooling structure scheme is determined. 展开更多
关键词 permanent magnet wind generator Hydrogen cooling Taguchi method Fluidic-thermal coupled fields
下载PDF
Winding Function Model-based Performance Evaluation of a PM Transverse Flux Generator for Applications in Direct-drive Systems
8
作者 Mehrage Ghods Jawad Faiz Ali A Pourmoosa 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期216-226,共11页
The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is h... The magnetic flux in a permanent magnet transverse flux generator(PMTFG) is three-dimensional(3D), therefore, its efficacy is evaluated using 3D magnetic field analysis. Although the 3D finite-element method(FEM) is highly accurate and reliable for machine simulation, it requires a long computation time, which is crucial when it is to be used in an iterative optimization process. Therefore, an alternative to 3DFEM is required as a rapid and accurate analytical technique. This paper presents an analytical model for PMTFG analysis using winding function method. To obtain the air gap MMF distribution, the excitation magneto-motive force(MMF) and the turn function are determined based on certain assumptions. The magnetizing inductance, flux density, and back-electro-magnetomotive force of the winding are then determined. To assess the accuracy of the proposed method, the analytically calculated parameters of the generator are compared to those obtained by a 3D-FEM. The presented method requires significantly shorter computation time than the 3D-FEM with comparable accuracy. 展开更多
关键词 Index Terms—permanent magnet transverse flux generator Winding function 3D-FEM Cogging torque PROTOTYPING
下载PDF
Multi-objective design optimization of a large-scale directdrive permanent magnet generator for wind energy conversion systems
9
作者 Arash Hasssanpour ISFAHANI Amirhossein Haji-Seyed BOROUJERDI Saeed HASANZADEH 《Frontiers in Energy》 SCIE CSCD 2014年第2期182-191,共10页
This paper presents a simukaneous multi- objective optimization of a direct-drive permanent magnet synchronous generator and a three-blade horizontal-axis wind turbine for a large scale wind energy conversion system. ... This paper presents a simukaneous multi- objective optimization of a direct-drive permanent magnet synchronous generator and a three-blade horizontal-axis wind turbine for a large scale wind energy conversion system. Analytical models of the generator and the turbine are used along with the cost model for optimization. Three important characteristics of the system i.e.,the total cost of the generator and blades, the annual energy output and the total mass of generator and blades are chosen as objective functions for a multi-objective optimization. Genetic algorithm (GA) is then employed to optimize the value of eight design parameters including seven generator parameters and a turbine parameter resulting in a set of Pareto optimal solutions. Four optimal solutions are then selected by applying some practical restrictions on the Pareto front. One of these optimal designs is chosen for finite element verification. A circuit-fed coupled time stepping finite element method is then performed to evaluate the no-load and the full load performance analysis of the system including the generator, a rectifier and a resistive load. The results obtained by the finite element analysis (FEA) verify the accuracy of the analytical model and the proposed method. 展开更多
关键词 permanent magnet synchronous generator wind turbine DIRECT-DRIVE multi-objective optimization
原文传递
Coordinated Robust PID-based Damping Control of Permanent Magnet Synchronous Generators for Low-frequency Oscillations Considering Power System Operational Uncertainties
10
作者 Rehan Sadiq Zhen Wang +2 位作者 Chi Yung Chung Deqiang Gan Cunzhi Tong 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第4期1042-1051,共10页
In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. M... In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios. 展开更多
关键词 permanent magnet synchronous generator(PMSG) low-frequency oscillation(LFO) proportional-integralderivative(PID) robust control H-infinity static output feed-back control linear matrix inequality(LMI)
原文传递
Current Loop Disturbance Suppression for Dual Three Phase Permanent Magnet Synchronous Generators Based on Modified Linear Active Disturbance Rejection Control
11
作者 Dezhi Xu Hu Yao +1 位作者 Yang He Wenxiang Zhao 《Chinese Journal of Electrical Engineering》 EI CSCD 2024年第1期101-113,共13页
A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d a... A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d and q axis currents in the d-q subspace and harmonic currents in the x-y subspace.In the d-q subspace,the proposed strategy uses a model-based LADRC to enhance the decoupling effect between the d and q axes and the disturbance rejection ability against parameter variation.In the x-y subspace,the 5th and 7th harmonic current suppression abilities are improved by using quasi-resonant units parallel to the extended state observer of the traditional LADRC.The proposed modified LADRC strategy improved both the steady-state performance and dynamic response of the DTP-PMSG system.The experimental results demonstrate that the proposed strategy is both feasible and effective. 展开更多
关键词 Dual three-phase permanent magnet synchronous generator current loop decoupling control harmonic suppression linear active disturbance rejection control
原文传递
Integrated Equivalent Model of Permanent Magnet Synchronous Generator Based Wind Turbine for Large-scale Offshore Wind Farm Simulation 被引量:2
12
作者 Ming Zou Yan Wang +3 位作者 Chengyong Zhao Jianzhong Xu Xiaojiang Guo Xu Sun 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第5期1415-1426,共12页
The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence... The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence, it is undoable to investigate the internal node information of the OWF in the electro-magnetic transient(EMT) programs. To fill this gap,this paper presents an equivalent modeling method for largescale OWF, whose accuracy and efficiency are guaranteed by integrating the individual devices of permanent magnet synchronous generator(PMSG) based WT. The node-elimination algorithm is used while the internal machine information is recursively updated. Unlike the existing aggregation methods, the developed EMT model can reflect the characteristics of each WT under different wind speeds and WT parameters without modifying the codes. The access to each WT controller is preserved so that the time-varying dynamics of all the WTs could be simulated. Comparisons of the proposed model with the detailed model in PSCAD/EMTDC have shown very high precision and high efficiency. The proposed modeling procedures can be used as reference for other types of WTs once the structures and parameters are given. 展开更多
关键词 Offshore wind farm(OWF) electro-magnetic transient(EMT) integrated equivalent modelling permanent magnet synchronous generator(PMSG)based wind turbine(WT)
原文传递
The Multi-Objective Optimization of AFPM Generators with Double-Sided Internal Stator Structures for Vertical Axis Wind Turbines
13
作者 Dandan Song Lianjun Zhou +2 位作者 Ziqi Peng Senhua Luo Jun Zhu 《Energy Engineering》 EI 2021年第5期1439-1452,共14页
The axial flux permanent magnet(AFPM)generator with double-sided internal stator structure is highly suitable for vertical axis wind turbines due to its high power density.The performance of the AFPM generator with do... The axial flux permanent magnet(AFPM)generator with double-sided internal stator structure is highly suitable for vertical axis wind turbines due to its high power density.The performance of the AFPM generator with double-sided internal stator structure can be improved by the reasonable design of electromagnetic parameters.To further improve the overall performance of the AFPM generator with double-sided internal stator structure,multivariable(coil widthω_(c),permanent magnet thickness h,pole arc coefficient α_(p) and working air gap l_(g))and multi-objective(generator efficiencyη,total harmonic distortion of the voltage THD and induced electromotive force amplitude EMF)functional relationships are innovatively established.Orthogonal analysis,mean analysis and variance analysis are performed on the influence parameters by combining the Taguchi method and response surface methodology to study the influence degrees of each influence parameter on the optimization objectives to determine the most appropriate electromagnetic parameters.The optimization results are verified by 3D finite element analysis.The optimized APFM generator with double-sided internal stator structure exhibits superior economy,stronger magnetic density,higher efficiency and improved power quality. 展开更多
关键词 Wind turbine double-sided internal stator structure multi-objective optimization axial flux permanent magnet generator
下载PDF
A Novel Modified Fuzzy-predictive Control of Permanent Magnet Synchronous Generator Based Wind Energy Conversion System
14
作者 Ehsan Akbari Milad Samady Shadlu 《Chinese Journal of Electrical Engineering》 EI CSCD 2023年第4期107-121,共15页
A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high per... A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high performance at high and low speeds,minimal control effort owing to lower rotor inertia,self-excitation,high reliability,and simplicity of structure compared with induction generators.However,the intermittent nature of wind energy implies that maximum efficiency is not obtained from this system.Accordingly,maximum power point tracking(MPPT)in wind turbine systems has been proposed to address this problem.Traditional MPPT strategies suffer from severe output power fluctuations,low efficiency,and significant ripples in turbine rotation speed.This paper presents a novel MPPT control strategy based on fuzzy logic control(FLC)and model predictive control(MPC)to extract the maximum power from a PMSG-WECS and control the machine-side and grid-side converters.The simulation results obtained from Matlab/Simulink confirm the superiority of the control model in eliminating the output power fluctuations of the wind generators and accurately tracking the maximum power point.A comparative study between conventional MPPT and control methods is also conducted. 展开更多
关键词 Maximum power point tracking(MPPT) wind energy conversion system(WECS) permanent magnet synchronous generator(PMSG) fuzzy logic control(FLC) model predictive control(MPC)
原文传递
Design and analysis of a novel hybrid cooling method of high-speed high-power permanent magnet assisted synchronous reluctance starter/generator in aviation applications
15
作者 Hong GUO Xu HE +4 位作者 Jinquan XU Wei TIAN Xiaofeng DING Laicai JU Dehong LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第3期285-302,共18页
To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace app... To improve the heat dissipation performance,this paper proposes a novel hybrid cooling method for high-speed high-power Permanent Magnet assisted Synchronous Reluctance Starter/Generator(PMa Syn R S/G)in aerospace applications.The hybrid cooling structure with oil circulation in the housing,oil spray at winding ends and rotor end surface is firstly proposed for the PMa Syn R S/G.Then the accurate loss calculation of the PMa Syn R S/G is proposed,which includes air gap friction loss under oil spray cooling,copper loss,stator and rotor core loss,permanent magnet eddy current loss and bearing loss.The parameter sensitivity analysis of the hybrid cooling structure is proposed,while the equivalent thermal network model of the PMa Syn R S/G is established considering the uneven spraying at the winding ends.Finally,the effectiveness of the proposed hybrid cooling method is demonstrated on a 40 k W/24000 r/min PMa Syn R S/G experimental platform. 展开更多
关键词 Air gap friction loss Oil spray cooling permanent magnet assisted synchronous reluctance starter/generator Thermal analysis Thermal network model
原文传递
Brushless DC Generator Controlled by Constrained Predictive Algorithm
16
作者 G. Gatto I. Marongiu +1 位作者 A. Perfetto A. Serpi 《Journal of Energy and Power Engineering》 2011年第8期750-758,共9页
The brushless DC generator controlled by a predictive algorithm is considered in this paper. It is able to develop excellent performances such as minimum Joule losses and minimum torque ripple, at the same time. The t... The brushless DC generator controlled by a predictive algorithm is considered in this paper. It is able to develop excellent performances such as minimum Joule losses and minimum torque ripple, at the same time. The tracking characteristic of the prime-mover is mandatory for setting the reference value of the electromagnetic torque developed by the generator, by means of which the switching pattern of the AC/DC converter is determined at each sampling time interval. The above generator performances are possible under certain constrained values of reference torque and rotor speed, due to the DC-bus voltage saturation. The knowledge of these quantities are necessary for the best matching of the prime-mover with the brushless DC generator and the AC/DC converter. In this paper, these constraints are investigated in detail with the aim of highlighting the best operation of the conversion s) stem under a constant DC bus voltage. 展开更多
关键词 Brushless machines permanent magnet generators predictive control
下载PDF
Dynamic characteristics of large permanent magnet direct‐drive generators considering electromagnetic–structural coupling effects
17
作者 Qinkai Han Xueping Xu +3 位作者 Zhihong Zhang Yifeng Yan Chao Peng Fulei Chu 《International Journal of Mechanical System Dynamics》 2023年第1期25-38,共14页
Dynamic characteristics of large permanent magnet direct‐drive generators(PMDGs)considering electromagnetic–structural coupling effects are analyzed in this study.Using the conformal mapping method,the scalar magnet... Dynamic characteristics of large permanent magnet direct‐drive generators(PMDGs)considering electromagnetic–structural coupling effects are analyzed in this study.Using the conformal mapping method,the scalar magnetic potential of the air gap magnetic field considering the slot effect is calculated.On the basis of the discrete current element and magnetic equivalent circuit model,the local magnetic saturation effect of the stator and rotor is quantitatively simulated and the air gap magnetic field intensity distribution is obtained via numerical simulation.A series of uniformly distributed equivalent electromagnetic springs are introduced to develop an electromagnetic–structural coupling finite element PMDG model.The proposed air gap field analysis method is verified by the finite element analysis results.On the basis of the test platform for the Goldwind 1.5MW PMDG,both modal and dynamic response tests for the stator/rotor coupling system are conducted,and the results are compared with the natural frequencies,mode shapes,and vibration responses obtained using the numerical model.The effects of the air gap length and rotor speed on the natural frequencies of the coupling system are analyzed.The proposed model has the potential to accurately evaluate the PMDG vibration energy,avoiding resonance points,and maintaining stable operations of the unit. 展开更多
关键词 permanent magnet direct‐drive generators dynamic characteristics electromagnetic–structural coupling effects conformal mapping magnetic equivalent circuit model electromagnetic springs
原文传递
Comparative Performance of Fixed-Speed and Variable-Speed Wind Turbine Generator Systems 被引量:2
18
作者 Mohamed Mansour Mohamed Nejib Mansouri Mohamed Faouzi Mimouni 《Journal of Mechanics Engineering and Automation》 2011年第1期74-81,共8页
In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In t... In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation. 展开更多
关键词 Fixed speed wind generator variable speed wind generator squirrel cage induction generator permanent magnet synchronous generator (PMSG) maximum power point tracking (MPPT) pitch control.
下载PDF
Starting Control of Free Piston Stirling Linear Generator System Based on FOC
19
作者 Qiaoling Yang Kechun Zhang +2 位作者 Shenghui Guo Boliang Song Xiaoyu Zhang 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第2期195-200,共6页
Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear... Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear generator system,a joint control method of free piston Stirling permanent magnet synchronous linear generator system based on field orientation control is proposed,based on the theoretical derivation of the mathematical model of the system and the principle of controller parameters setting,the simulation experiments of the system starting stage under several Stirling engine working conditions are carried out under simulation.The experimental results show that the stability and rapidity of the system are improved,and the dynamic response speed of generator parameters under different working conditions is accelerated,what fully verifies the correctness and effectiveness of the method.It provides an effective way to improve the control performance of the system and stabilize the power generation operation. 展开更多
关键词 Parameter setting Field orientation control Double closed loop permanent magnet synchronous linear generator
下载PDF
Thermal analysis of high speed permanent magnetic generator 被引量:2
20
作者 LI WeiLi ZHANG XiaoChen +2 位作者 CHENG ShuKang CAO JunCi ZHANG YiHuang 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第5期1419-1426,共8页
High-speed permanent magnetic generators (HSPMG) are common and important power generation equipments used in distributed generation systems. A 100 kW level HSPMG is investigated in this paper, and it is fluid-thermal... High-speed permanent magnetic generators (HSPMG) are common and important power generation equipments used in distributed generation systems. A 100 kW level HSPMG is investigated in this paper, and it is fluid-thermal coupling analyzed. The transient 2D electromagnetic field while machine is under rated operating is analyzed by using the time-stepping FEM, from which the electromagnetic performances and the loss distributions are obtained. Then, an analysis model for fluid-solid temperature field analysis is established. Taking losses as the distributed heat sources, the 3D thermal field is coupling calculated. The variations of heat transfer coefficient and temperature of fluid in stator grooves along the axial direction, as well as the whole region 3D temperature distribution in HSPMG are obtained. Then, considering the variations of heat sources distributions and heat transfer conditions, 3D temperature fields of HSPMG operating under different speeds are calculated, and the influences of machine operating speed on the HSPMG thermal performance are studied, based on which, the functions of machine temperature with operating speed and stator windings resistance are proposed. The obtained conclusions may provide a useful reference for the design and research of HSPMG. 展开更多
关键词 high-speed permanent magnetic generator ELECTROmagnetIC FLUID TEMPERATURE SPEED
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部