Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic E...Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic Eruptions, Faculty of Sciences, Tohoku University, Sendai 98077, Japan展开更多
A multiplexed holographic display video has been achieved by using a passive azo-dye-doped liquid crystal (LC) cell. Holograms formed in this cell can be refreshed in the order of several milliseconds. By angular mu...A multiplexed holographic display video has been achieved by using a passive azo-dye-doped liquid crystal (LC) cell. Holograms formed in this cell can be refreshed in the order of several milliseconds. By angular multiplexing technique, dynamically multiplexed holographic videos are realized. Moreover, the reconstructed RGB images are merged into a color image, which illustrates the possibility of a color holographic three-dimensional (3D) display by holographic multiplexing of the LC cell.展开更多
文摘Seismological Bureau of Sichuan Province, Chengdu 610041, China2) Center for Analysis and Prediction, State Seismological Bureau, Beijing 100036, China3) Observation Center for Prediction of Earthquakes and Volcanic Eruptions, Faculty of Sciences, Tohoku University, Sendai 98077, Japan
基金sponsored by the National"973"Program of China(No.2013CB328804)the National Natural Science Foundation of China(No.61307028)the Science & Technology Commission of Shanghai Municipality(Nos.13ZR1420000 and 11JC1405300)
文摘A multiplexed holographic display video has been achieved by using a passive azo-dye-doped liquid crystal (LC) cell. Holograms formed in this cell can be refreshed in the order of several milliseconds. By angular multiplexing technique, dynamically multiplexed holographic videos are realized. Moreover, the reconstructed RGB images are merged into a color image, which illustrates the possibility of a color holographic three-dimensional (3D) display by holographic multiplexing of the LC cell.