This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to...This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to study distribution system behavior under different operating conditions. Two-bus connected by asymmetrical line is used as the study system. The effects of both unbalance and extreme loading conditions are investigated. Also, the impact of distributed energy resources is studied. Different case studies and loading scenarios are presented to trace the eigenvalues of the Jacobian matrix. The results exhibit the existence of a new bifurcation point which may not be related to the voltage stability.展开更多
In this paper, the dynamics behaviors on fo-δ parameter surface is investigated for Gledzer-Ohkitani- Yamada model We indicate the type of intermittency chaos transitions is saddle node bifurcation. We plot phase dia...In this paper, the dynamics behaviors on fo-δ parameter surface is investigated for Gledzer-Ohkitani- Yamada model We indicate the type of intermittency chaos transitions is saddle node bifurcation. We plot phase diagram on fo-δ parameter surface, which is divided into periodic, quasi-periodic, and intermittent chaos areas. By means of varying Taylor-microscale Reynolds number, we calculate the extended self-similarity of velocity structure function.展开更多
文摘This paper presents the application of bifurcation method on the steady state three-phase load-flow Jacobian method to study the voltage stability of unbalanced distribution systems. The eigenvalue analysis is used to study distribution system behavior under different operating conditions. Two-bus connected by asymmetrical line is used as the study system. The effects of both unbalance and extreme loading conditions are investigated. Also, the impact of distributed energy resources is studied. Different case studies and loading scenarios are presented to trace the eigenvalues of the Jacobian matrix. The results exhibit the existence of a new bifurcation point which may not be related to the voltage stability.
基金supported by National Natural Science Foundation-the Science Foundation of China Academy of Engineering Physics (NSAF) under Grant No. 10576076the Major Projects of National Natural Science Foundation of China under Grant No. 10335010
文摘In this paper, the dynamics behaviors on fo-δ parameter surface is investigated for Gledzer-Ohkitani- Yamada model We indicate the type of intermittency chaos transitions is saddle node bifurcation. We plot phase diagram on fo-δ parameter surface, which is divided into periodic, quasi-periodic, and intermittent chaos areas. By means of varying Taylor-microscale Reynolds number, we calculate the extended self-similarity of velocity structure function.