Toprovide a theoretical basis for optimizing the pervaporation procedure, a mass transfer model for pervaporation for binary mixtures was developed basedon the multi-fields synergy theory. This model used the mechanis...Toprovide a theoretical basis for optimizing the pervaporation procedure, a mass transfer model for pervaporation for binary mixtures was developed basedon the multi-fields synergy theory. This model used the mechanism of sorption-diffusion-desorption and introduced a diffusion coefficient, which was dependent on the feed concentration and temperature. Regarding the strong coupling effect in the mass transfer, the concentration distribution in membrane was predicted using the Flory-Huggins thermodynamic theory. The batch experiments and other experiments with constant composition-were conducted-using a modified chitosan pervaporatioffmembrane to separate tert-butyl alcohol (TBA)-water mixtures. The parameters of the mass transfer model were obtained from the flux of the experiments with a constant composition and the activity coefficients available through phase equilibrium equation, using the Willson equation in the feed side and the Flory-Huggins thermodynamic theory within the membrane The simulation results of the experiments .are in good agreement with the results, of the experiments.展开更多
Energy storage technology is an essential part of the efficient energy system.Compressed air energy storage(CAES)is considered to be one of the most promising large-scale physical energy storage technologies.It is fav...Energy storage technology is an essential part of the efficient energy system.Compressed air energy storage(CAES)is considered to be one of the most promising large-scale physical energy storage technologies.It is favored because of its low-cost,long-life,environmentally friendly and low-carbon characteristics.The compressor is the core component of CAES,and the performance is critical to the overall system efficiency.That importance is not only reflected in the design point,but also in the continuous efficient operation under variable working conditions.The diagonal compressor is currently the focus of the developing large-scale CAES because of its stronger flow capacity compared with traditional centrifugal compressors.And the diagonal compressor has the higher single stage pressure ratio compared with axial compressors.In this paper,the full three dimensional numerical simulation technologies with synergy theory are used to compare and analyze the internal flow characteristics.The performance of the centrifugal and diagonal impellers that are optimized under the same requirements for large-scale CAES has been analyzed.The relationship between the internal flow characteristics and performance of the centrifugal and diagonal impellers with the change of mass flow rates and total inlet temperature is given qualitatively and quantitatively.Where the cosine value of the synergy angle is high,the local flow loss is large.The smaller proportion of the positive area is the pursuit of design.Through comparative analysis,it is concluded that the internal flow and performance changes of centrifugal and diagonal impellers are different.The results confirm the superiority and feasibility of the off-design performance of the diagonal compressor applied to the developing large-scale CAES.展开更多
The coordination mechanism between the career development planning of vocational students and the management of vocational colleges is an important means to improve the quality of education and students’vocational co...The coordination mechanism between the career development planning of vocational students and the management of vocational colleges is an important means to improve the quality of education and students’vocational competitiveness.The application of synergy theory in the field of education emphasizes the interaction and coordination of various elements in the system and pursues the optimization of overall efficiency.Based on the theory of coordination and its relevance to the management of higher vocational colleges,this paper analyzes the current development status and problems of the coordination mechanism and puts forward the strategy of building an efficient coordination mechanism designed to enhance the students’employment competitiveness,promote the all-round development,and provide theoretical and practical support for the reform and development of higher vocational education.展开更多
The microenvironment,which involves pollutant dispersion of the urban street canyon,is critical to the health of pedestrians and residents.The objectives of this work are twofold:(i)to effectively assess the pollutant...The microenvironment,which involves pollutant dispersion of the urban street canyon,is critical to the health of pedestrians and residents.The objectives of this work are twofold:(i)to effectively assess the pollutant dispersion process based on a theory and(ii)to adopt an appropriate stratigy,i.e.,wind catcher,to alleviate the pollution in the street canyons.Pollutant dispersion in street canyons is essentially a convective mass transfer process.Because the convective heat transfer process and the mass transfer process are physically similar and the applicability of field synergy theory to turbulence has been verified in the literature,we apply the field synergy theory to the study of pollutant dispersion in street canyons.In this paper,a computational fluid dynamics(CFD)simulation is conducted to investigate the effects of wind catcher,wind speed and the geometry of the street canyons on pollutant dispersion.According to the field synergy theory,Sherwood number and field synergy number are used to quantitatively evaluate the wind catcher and wind speed on the diffusion of pollutants in asymmetric street canyons.The results show that adding wind catchers can significantly improve the air quality of the step-down street canyon and reduce the average pollutant concentrations in the street canyon by 75%.Higher wind speed enhances diffusion of pollutants differently in different geometric street canyons.展开更多
This paper dealt with a series of numerical investigations on a new porous cooling channel applied to PV/T systems in order to improve the insufficient heat transfer in the conventional channel.The proposed porous coo...This paper dealt with a series of numerical investigations on a new porous cooling channel applied to PV/T systems in order to improve the insufficient heat transfer in the conventional channel.The proposed porous cooling channel based on field synergy theory had a higher overall heat transfer coefficient,which enhanced the total efficiency of the PV/T system.The numerical model was validated with experimental data.The results showed that holes distributed non-uniformly near the outlet of the cooling water led to a better cooling effect,and a hole diameter of 0.005 m led to an optimal performance.The total efficiency of the PV module with the new cooling channel was 4.17%higher than the conventional one at a solar irradiance of 1000 W/m^(2)and an inlet mass flow rate of 0.006 kg/s.In addition,as the solar irradiance increased from 300 to 1200 W/m^(2),the total efficiency of the new PV/T system dropped by 5.07%,which included reductions in both the electrical and thermal efficiency.The total efficiency was improved by 18.04%as the inlet mass flow rate of cooling water increased from 0.002 to 0.02 kg/s.展开更多
基金Supported by the Key Project of National Natural Science Foundation of China (No.20436040), and the National Natural Science Foundation of China (No.20476084, No.20776117).
文摘Toprovide a theoretical basis for optimizing the pervaporation procedure, a mass transfer model for pervaporation for binary mixtures was developed basedon the multi-fields synergy theory. This model used the mechanism of sorption-diffusion-desorption and introduced a diffusion coefficient, which was dependent on the feed concentration and temperature. Regarding the strong coupling effect in the mass transfer, the concentration distribution in membrane was predicted using the Flory-Huggins thermodynamic theory. The batch experiments and other experiments with constant composition-were conducted-using a modified chitosan pervaporatioffmembrane to separate tert-butyl alcohol (TBA)-water mixtures. The parameters of the mass transfer model were obtained from the flux of the experiments with a constant composition and the activity coefficients available through phase equilibrium equation, using the Willson equation in the feed side and the Flory-Huggins thermodynamic theory within the membrane The simulation results of the experiments .are in good agreement with the results, of the experiments.
基金supported by the Major Science and Technology Projects of Inner Mongolia(Grant No.2021ZD0030)the National Natural Science Foundation of China(Grant No.52106278)+1 种基金the National Science Fund for Distinguished Young Scholars(Grant No.51925604)the Science and Technology Foundation of Guizhou Province(No.[2019]1422)。
文摘Energy storage technology is an essential part of the efficient energy system.Compressed air energy storage(CAES)is considered to be one of the most promising large-scale physical energy storage technologies.It is favored because of its low-cost,long-life,environmentally friendly and low-carbon characteristics.The compressor is the core component of CAES,and the performance is critical to the overall system efficiency.That importance is not only reflected in the design point,but also in the continuous efficient operation under variable working conditions.The diagonal compressor is currently the focus of the developing large-scale CAES because of its stronger flow capacity compared with traditional centrifugal compressors.And the diagonal compressor has the higher single stage pressure ratio compared with axial compressors.In this paper,the full three dimensional numerical simulation technologies with synergy theory are used to compare and analyze the internal flow characteristics.The performance of the centrifugal and diagonal impellers that are optimized under the same requirements for large-scale CAES has been analyzed.The relationship between the internal flow characteristics and performance of the centrifugal and diagonal impellers with the change of mass flow rates and total inlet temperature is given qualitatively and quantitatively.Where the cosine value of the synergy angle is high,the local flow loss is large.The smaller proportion of the positive area is the pursuit of design.Through comparative analysis,it is concluded that the internal flow and performance changes of centrifugal and diagonal impellers are different.The results confirm the superiority and feasibility of the off-design performance of the diagonal compressor applied to the developing large-scale CAES.
文摘The coordination mechanism between the career development planning of vocational students and the management of vocational colleges is an important means to improve the quality of education and students’vocational competitiveness.The application of synergy theory in the field of education emphasizes the interaction and coordination of various elements in the system and pursues the optimization of overall efficiency.Based on the theory of coordination and its relevance to the management of higher vocational colleges,this paper analyzes the current development status and problems of the coordination mechanism and puts forward the strategy of building an efficient coordination mechanism designed to enhance the students’employment competitiveness,promote the all-round development,and provide theoretical and practical support for the reform and development of higher vocational education.
基金This research was supported by the National Natural Science Foundation of China(Grant No.51778511)the European Commission H2020 Marie S Curie Research and Innovation Staff Exchange(RISE)award(Grant No.871998)+2 种基金Hubei Provincial Natural Science Foundation of China(Grant No.2018CFA029)Key Project of ESI Discipline Development of Wuhan University of Technology(Grant No.2017001)the Fundamental Research Funds for the Central Universities(Grant No.2019IVB082).
文摘The microenvironment,which involves pollutant dispersion of the urban street canyon,is critical to the health of pedestrians and residents.The objectives of this work are twofold:(i)to effectively assess the pollutant dispersion process based on a theory and(ii)to adopt an appropriate stratigy,i.e.,wind catcher,to alleviate the pollution in the street canyons.Pollutant dispersion in street canyons is essentially a convective mass transfer process.Because the convective heat transfer process and the mass transfer process are physically similar and the applicability of field synergy theory to turbulence has been verified in the literature,we apply the field synergy theory to the study of pollutant dispersion in street canyons.In this paper,a computational fluid dynamics(CFD)simulation is conducted to investigate the effects of wind catcher,wind speed and the geometry of the street canyons on pollutant dispersion.According to the field synergy theory,Sherwood number and field synergy number are used to quantitatively evaluate the wind catcher and wind speed on the diffusion of pollutants in asymmetric street canyons.The results show that adding wind catchers can significantly improve the air quality of the step-down street canyon and reduce the average pollutant concentrations in the street canyon by 75%.Higher wind speed enhances diffusion of pollutants differently in different geometric street canyons.
基金The authors gratefully acknowledge the funding support from the Natural Science Foundation of Heilongjiang Province(Project#:YQ2020E019)。
文摘This paper dealt with a series of numerical investigations on a new porous cooling channel applied to PV/T systems in order to improve the insufficient heat transfer in the conventional channel.The proposed porous cooling channel based on field synergy theory had a higher overall heat transfer coefficient,which enhanced the total efficiency of the PV/T system.The numerical model was validated with experimental data.The results showed that holes distributed non-uniformly near the outlet of the cooling water led to a better cooling effect,and a hole diameter of 0.005 m led to an optimal performance.The total efficiency of the PV module with the new cooling channel was 4.17%higher than the conventional one at a solar irradiance of 1000 W/m^(2)and an inlet mass flow rate of 0.006 kg/s.In addition,as the solar irradiance increased from 300 to 1200 W/m^(2),the total efficiency of the new PV/T system dropped by 5.07%,which included reductions in both the electrical and thermal efficiency.The total efficiency was improved by 18.04%as the inlet mass flow rate of cooling water increased from 0.002 to 0.02 kg/s.