Stutzerimonas have been extensively studied due to their remarkable metabolic and physiological diversity.However,research on its phages is currently limited.In this study,we isolated a novel double-stranded DNA(dsDNA...Stutzerimonas have been extensively studied due to their remarkable metabolic and physiological diversity.However,research on its phages is currently limited.In this study,we isolated a novel double-stranded DNA(dsDNA)phage,vB_SstM-PG1,from the marine environment that infects Stutzerimonas stutzeri G1.Its dsDNA genome is 37204 bp long with a G/C content of 64.14%and encodes 54 open reading frames.The phage possesses a tail packaging structure that is different from known Stutzerimonas stutzeri phages and exhibits structural protein characteristics similar to those of temperate phages.In addition,two genes of toxin-antitoxin system,including YdaS_antitoxin and HEPN_SAV_6107,were found in the vB_SstM-PG1 genome and play important roles in regulating host growth and metabolism.With phylogenetic tree and comparative genomic analysis,it has been determined that vB_SstM-PG1 is not closely related to any phages previously identified in the GenBank database.Instead,it has a connection with enigmatic,uncultured viruses.Specifically,the vB_SstM-PG1 virus exhibits an average nucleotide identity of over 70%with six uncultivated viruses identified in the IMG/VR v4 database.This significant finding has resulted in the identification of a novel viral genus known as Metabovirus.展开更多
Plant carbon(C)concentration is a fundamental trait for estimating C storage and nutrient utilization.However,the mechanisms of C concentration variations among different tree tissues and across species remains poorly...Plant carbon(C)concentration is a fundamental trait for estimating C storage and nutrient utilization.However,the mechanisms of C concentration variations among different tree tissues and across species remains poorly understood.In this study,we explored the variations and determinants of C concentration of nine tissues from 216 individuals of 32 tree species,with particular attention on the effect of wood porosity(i.e.,non-porous wood,diffuse-porous wood,and ring-porous wood).The inter-tissue pattern of C concentration diverged across the three porosity types;metabolically active tissues(foliage and fine roots,except for the foliage of ring-porous species)generally had higher C levels compared with inactive wood.The poor inter-correlations between tissue C concentrations indicated a necessity of measuring tissue-and specific-C concentrations.Carbon concentration for almost all tissues generally decreased from non-porous,to diffuse-porous and to ring-porous.Tissue C was often positively correlated with tissue(foliage and wood)density and tree size,while negatively correlated with growth rate,depending on wood porosity.Our results highlight the mediating effect of type of wood porosity on the variation in tissue C among temperate species.The variations among tissues were more important than that among species.These findings provided insights on tissue C concentration variability of temperate forest species.展开更多
Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the...Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.展开更多
Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management...Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management and research.Our study aims to develop basal area growth models for tree species cohorts.The analysis is based on a dataset of 423 permanent plots(2,500 m^(2))located in temperate forests in Durango,Mexico.First,we define tree species cohorts based on individual and neighborhood-based variables using a combination of principal component and cluster analyses.Then,we estimate the basal area increment of each cohort through the generalized additive model to describe the effect of tree size,competition,stand density and site quality.The principal component and cluster analyses assign a total of 37 tree species to eight cohorts that differed primarily with regard to the distribution of tree size and vertical position within the community.The generalized additive models provide satisfactory estimates of tree growth for the species cohorts,explaining between 19 and 53 percent of the total variation of basal area increment,and highlight the following results:i)most cohorts show a"rise-and-fall"effect of tree size on tree growth;ii)surprisingly,the competition index"basal area of larger trees"had showed a positive effect in four of the eight cohorts;iii)stand density had a negative effect on basal area increment,though the effect was minor in medium-and high-density stands,and iv)basal area growth was positively correlated with site quality except for an oak cohort.The developed species cohorts and growth models provide insight into their particular ecological features and growth patterns that may support the development of sustainable management strategies for temperate multispecies forests.展开更多
Based on the analysis of different theory for glass tempering process,the“structural theory”with stress relaxation and structural relaxation effects was selected to investigate the tempering of flat glass quantifica...Based on the analysis of different theory for glass tempering process,the“structural theory”with stress relaxation and structural relaxation effects was selected to investigate the tempering of flat glass quantificationally.The geometrical model with small size and non-homogeneous mesh were considered to build the finite element models according to the characteristics of stress field.The tempering process of flat glass with12 mm thickness was calculated with the verified finite element model.The transient and permanent stress of the central area,edge and corner end of the flat glass are obtained and analyzed.From the calculation results of basic case,the transient tensile stress at the upper surface of the central area,the center point of edge,the edge of edge,the edge of corner were 14.30,18.94,40.76 and 34.75 MPa,respectively.The transient tensile stress at these points were dangerous to promote the glass to break during the tempering.In addition,the point at the diagonal line of symmetry plane in the thickness direction,which is 14 mm from corner,has the maximum permanent tensile stress about 70.01 MPa in the flat glass after tempering.Thus,it is indicated that the corner is the weakest region in the tempered glass.展开更多
DEAR EDITOR,Movement patterns can reflect species-specific characteristics of individuals and animal groups at a given scale. Accurate three-dimensional(3D) assessment can quantify the relationship between movement pa...DEAR EDITOR,Movement patterns can reflect species-specific characteristics of individuals and animal groups at a given scale. Accurate three-dimensional(3D) assessment can quantify the relationship between movement patterns of an animal and its unique habitat. Here, we evaluated the effects of habitat structure on movement patterns of the golden snub-nosed monkey(Rhinopithecus roxellana). We used airborne light detection and ranging(LiDAR) to map the 3D structure of the temperate forest in the Qinling Mountains(Shaanxi, China).展开更多
Conspecific negative density dependence(CNDD)is a potentially important mechanism in maintaining species diversity.While previous evidence showed habitat heterogeneity and species’dispersal modes affect the strength ...Conspecific negative density dependence(CNDD)is a potentially important mechanism in maintaining species diversity.While previous evidence showed habitat heterogeneity and species’dispersal modes affect the strength of CNDD at early life stages of trees(e.g.,seedlings),it remains unclear how they affect the strength of CNDD at later life stages.We examined the degree of spatial aggregation between saplings and trees for species dispersed by wind and gravity in four topographic habitats within a 25-ha temperate forest dynamic plot in the Qinling Mountains of central China.We used the replicated spatial point pattern(RSPP)analysis and bivariate paircorrelation function(PCF)to detect the spatial distribution of saplings around trees at two scales,15 and 50 m,respectively.Although the signal was not apparent across the whole study region(or 25-ha),it is distinct on isolated areas with specific characteristics,suggesting that these characteristics could be important factors in CNDD.Further,we found that the gravity-dispersed tree species experienced CNDD across habitats,while for wind-dispersed species CNDD was found in gully,terrace and low-ridge habitats.Our study suggests that neglecting the habitat heterogeneity and dispersal mode can distort the signal of CNDD and community assembly in temperate forests.展开更多
The microstructure and mechanical properties of titanium(Ti)-bearing medium-carbon nonquenched and tempered steel with different nitrogen content before and after hot forging were investigated through smelting,forging...The microstructure and mechanical properties of titanium(Ti)-bearing medium-carbon nonquenched and tempered steel with different nitrogen content before and after hot forging were investigated through smelting,forging,and laboratory tests.The results show that the grain size of nonquenched and tempered steel was gradually refined,and the ferrite content gradually increased with an increase in nitrogen content.The grain size of the material with low nitrogen content increased abnormally,and its impact properties significantly decreased after hot forging.The grain size of nonquenched and tempered steel with higher nitrogen content was slightly larger than that before forging,and the tensile and yield strength increased,but the impact toughness was not significantly reduced.The Ti-bearing nonquenched and tempered steel showed better strength and toughness after hot forging with the addition of 0.010%0.015%nitrogen.展开更多
Cold-rolled martensitic steel is an important type of advanced high-strength steel for automobile production.With martensite as its primary microstructure constituent, martensitic steel possesses exceptional high stre...Cold-rolled martensitic steel is an important type of advanced high-strength steel for automobile production.With martensite as its primary microstructure constituent, martensitic steel possesses exceptional high strength despite its low alloy content.As the strength of cold-rolled martensitic steel increases, the martensite and carbon content also increases, leading to a decrease in bending properties and toughness.In this paper, the effect of various tempering parameters on the bending property and impact toughness of a quenched cold-rolled martensitic steel sheet was studied.It is found that after quenching, the ductility and impact toughness of the experimental steel are improved using low-temperature heat treatment.The optimal tempering conditions for ductility and toughness are analyzed.展开更多
The novel martensitic heat-resistant steel G115 was designed for thick-section boiler components of ultra-supercritical(USC) power plants at 630-650 ℃.The impact of the quenching and tempering processes on the proper...The novel martensitic heat-resistant steel G115 was designed for thick-section boiler components of ultra-supercritical(USC) power plants at 630-650 ℃.The impact of the quenching and tempering processes on the properties and microstructure of G115 steel was explored.The samples that were quenched and tempered twice had a higher tensile strength at room temperature and 650 ℃,and the impact energy was significantly improved.The strength and impact energy increased in proportion to the increase in the first quenching temperature.The microstructure differences between the single and double quenched and tempered samples were examined using metallographic microscopy and scanning electron microscopy.The grain size of the double quenched and tempered samples was finer than that of the single quenched and tempered samples, and the tempered martensite lath is more visible, as are the carbides and other precipitates, which are finer and more uniformly distributed.As the first quenching temperature increased, the grains became coarser but more uniform.展开更多
A self-developed electromagnetic induction-heating device was used to investigate the variation in the microstructure and properties of X80 pipeline steel in the rapid induction tempering process at different process ...A self-developed electromagnetic induction-heating device was used to investigate the variation in the microstructure and properties of X80 pipeline steel in the rapid induction tempering process at different process parameters. The effects of the tempering condition on toughness, microstructure, size and distribution of precipitates of X80 pipeline steel were observed using a metallographic microscopy and scanning electron microscopy. Compared with the samples prepared via traditional tempering techniques, results show that the samples prepared via rapid induction tempering had improved performances. When the heating temperature is 590 ℃, at a holding time of 90 s,it was found that acicular ferrite was refined, carbonite precipitation was small, and precipitates were evenly distributed in the matrix. The low-temperature impact energy, also known as the impact absorption energy, at -40 ℃ was found to be 430.5 J for the rapid induction tempering samples and 323.2 J for the traditionally tempered sample. The low-temperature impact energy at -60 ℃ was found to be 351.3 J for the rapid induction tempered sample and 312.1 J for the tradition tempering sample.展开更多
In order to study the self tempering effect on the solidification of Al-Si alloy, a setup was designed to conduct experiments. The characters of β phases in different thicknesses of Al-Si samples were investigated. T...In order to study the self tempering effect on the solidification of Al-Si alloy, a setup was designed to conduct experiments. The characters of β phases in different thicknesses of Al-Si samples were investigated. The results show that the size distributions of β phases obey the logarithmic normal distribution. The Brinell hardness tests were also carried out. The tested hardness results show that the hardness distribution of the casting cooled in water is evener than that cooled in air, and its averaged value is higher than that cooled in air.展开更多
Middle-sized chambers (40cmx40cmx20 cm) and an infrared gas analyzer (IRGA) were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which ...Middle-sized chambers (40cmx40cmx20 cm) and an infrared gas analyzer (IRGA) were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which is a typical temperate forest ecosystem in the mountainous areas of Beijing. Changes of CO2 concentrations in both the atmosphere (2m above canopy) and the forest canopy (2m below the top of the canopy) together with those of net photosynthesis and soil CO2 evolution were also examined, in order to find the characteristics of CO2 exchange between the different components of the temperate forest ecosystem and the atmosphere. Atmospheric CO2 averaged (323+10) and (330+1) mol mol-1 respectively in summer and autumn. During the 24-hour measurements, large differences as much as -46 and -61 mol mol-1 respectively in the atmosphere and forest were found. Net photosynthesis of the grass layer in summer was (2. 59 9+ 1.05) mol CO2 m-2 S-1, two times of that in autumn, (1.31+0.39) mol CO2 s-1 In summer, there was much more CO2 evolved from soil than in autumn, averaging (5.18+0.75) mol CO2 m-2 s-1 and (1.96 + 0.57) (mol CO2 m-2 s-1, respectively. A significant correlation was found between soil CO2 evolution and ground temperature, with F =-0.864 2+0.310 1X,r=0.7164, P<0.001 (n=117). Both the minimal atmospheric CO2 level and the maximum net photosynthesis occurred around 14:00; and an increase in atmospheric CO2 and of soil CO2 evolution during night times were also found to be remarkable.展开更多
Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The ...Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).展开更多
The tempering microstructure and mechanical properties of X80 steel used for heating-bent pipe were analyzed. The results show that the microstructure of X80 steel tempered at 550 ℃ and 600 ℃ is bainitic ferrite (BF...The tempering microstructure and mechanical properties of X80 steel used for heating-bent pipe were analyzed. The results show that the microstructure of X80 steel tempered at 550 ℃ and 600 ℃ is bainitic ferrite (BF)+granular bainite (GB), and partial ferrite laths in BF merge and broaden. The interior sub-lath boundary of some GB begins to disappear due to merging, the M/A constituent (a mixture of martensite plus retained austenite) in GB is orbicular. At the two tempering temperatures the tested X80 steel shows a certain degree of tempering stability. After being tempered at 650 ℃, the microstructure of X80 steel is GB+quasi-polygonal ferrite(QF), and the original BF laths have merged to form smaller GB crystal grains. The reason is that the steel shows better match of strength and toughness. After being tempered at 700 ℃ , the microstructure of X80 steel is composed mainly of QF, which can improve the plasticity but decline severely the yield strength of X80, and the M/A constituent assembles and grows up at the grain boundary of QF, resulting in excellent lower low-temperature toughness of X80.展开更多
The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows ...The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.展开更多
The variations of microstructures and mechanical properties of steels 15CrMnMoV, 18Mn2CrMoB,18Cr2Ni4W,30CrMnSi,30CrMnSiNi2 and 40CrMnSiMoV,which were tempered at different temperatures after austempering and continuou...The variations of microstructures and mechanical properties of steels 15CrMnMoV, 18Mn2CrMoB,18Cr2Ni4W,30CrMnSi,30CrMnSiNi2 and 40CrMnSiMoV,which were tempered at different temperatures after austempering and continuous cooling at given rates, have been investigated.Based on the experimental results,the behaviour and mechanism of tempered bainite embrittlement(TBE)have been discussed.Finally,the theoretical and prac- tical basis for selecting the optimum tempering temperature of steels with bainite structure af- ter heat treatment are proposed.展开更多
Soil carbon dioxide emission: soil respiration is representing a major contributor of accumulating carbon dioxide in the atmosphere that aids to accelerate global warming and altering the climate. Soil temperature, so...Soil carbon dioxide emission: soil respiration is representing a major contributor of accumulating carbon dioxide in the atmosphere that aids to accelerate global warming and altering the climate. Soil temperature, soil water content, sun light and vegetation are considered most common regulators of soil respiration variations in ecosystem. The soil respiration was measured in grassland intended to examine how the soil respiration changed with varying climatic factors, for two years (2015 and 2016) in temperate grassland of Annapurna Conservation Area (ACA), Nepal. In the study, soil temperature accounted exponential function of soil respiration variation at 42.9%, 19.1% and 23.3%, and temperature sensitivity of the soil respiration (Q10) obtained at 6.2, 1.4 and 1.8 in October 2015 and April 2016 and both the measurements were combined, respectively. Significant negative (R2 = 0.50, p < 0.05, October 2015) and positive (R2 = 0.084, p < 0.05, April 2016) exponential function of soil respiration and soil water content were determined, where high soil respiration values were always measured between 30% and 35% of the soil water content. However, linear significant relationship was determined (R2 = 0.376, p < 0.05) between soil respiration and photosynthetic photon flux density (PPFD). Soil respiration value averaged in October 2015 was 357 mg CO2 m-2 h-1 and in April 2016 it was 444.6 mg CO2 m-2 h-1. Above- and below-ground plant biomasses were obtained at 231.1 g d w m-2 and 1538.8 g d w m-2 in October, and at 449.9 g d w m-2 and 349.0 g d w m-2 in April, respectively. This study showed variation of soil respiration in relation to the factors such as soil temperature, soil water content and photosynthetic photon flux density signifying their importance in governing ecosystem function and carbon balance of the temperate grassland ecosystem.展开更多
Under the present changing climate conditions and the observed temperature increase,it is of high importance to understand its effects on aquatic microbial life,and organisms’adaptations at the biochemical level.To a...Under the present changing climate conditions and the observed temperature increase,it is of high importance to understand its effects on aquatic microbial life,and organisms’adaptations at the biochemical level.To adjust to temperature or salinity stress and avoid cell damage,organisms alter their degree of fatty acids(FAs)saturation.Thus,temperature is expected to have strong effects on both the quantity and quality of FAs in aquatic microorganisms.Here we review some recent findings about FAs sensitivity to climate change in contrasting environments.Overall,heat waves may induce changes in the relative abundance of polyunsaturated FAs(PUFA).However,the impact of the exposure to warming waters is different in temperate and polar environments.In cold marine waters,high concentration of omega-3(ω3)FAs such as eicosapentaenoic acid(EPA)is promoted due to the activation of the desaturase enzyme.In this way,cells have enough energy to produce or activate antioxidant protection mechanisms and avoid oxidative stress due to heat waves.Contrastingly,under high irradiance and heat wave conditions in temperate environments,photosystems’protection is achieved by decreasing EPA concentration due to desaturase sensitivity.Essential FAs are transferred in aquatic food webs.Therefore,any alteration in the production of essential FAs by phytoplankton(the main source ofω3)due to climate warming can be transferred to higher trophic levels,with cascading effects for the entire aquatic ecosystem.展开更多
基金supported by the National Natural Science Foundation of China (Nos.42188102,42120104006,41976117,42176111 and 42306111)the Fundamental Research Funds for the Central Universities (No.201812002 and Andrew McMinn)。
文摘Stutzerimonas have been extensively studied due to their remarkable metabolic and physiological diversity.However,research on its phages is currently limited.In this study,we isolated a novel double-stranded DNA(dsDNA)phage,vB_SstM-PG1,from the marine environment that infects Stutzerimonas stutzeri G1.Its dsDNA genome is 37204 bp long with a G/C content of 64.14%and encodes 54 open reading frames.The phage possesses a tail packaging structure that is different from known Stutzerimonas stutzeri phages and exhibits structural protein characteristics similar to those of temperate phages.In addition,two genes of toxin-antitoxin system,including YdaS_antitoxin and HEPN_SAV_6107,were found in the vB_SstM-PG1 genome and play important roles in regulating host growth and metabolism.With phylogenetic tree and comparative genomic analysis,it has been determined that vB_SstM-PG1 is not closely related to any phages previously identified in the GenBank database.Instead,it has a connection with enigmatic,uncultured viruses.Specifically,the vB_SstM-PG1 virus exhibits an average nucleotide identity of over 70%with six uncultivated viruses identified in the IMG/VR v4 database.This significant finding has resulted in the identification of a novel viral genus known as Metabovirus.
基金supported by the National Natural Science Foundation of China(32171765).
文摘Plant carbon(C)concentration is a fundamental trait for estimating C storage and nutrient utilization.However,the mechanisms of C concentration variations among different tree tissues and across species remains poorly understood.In this study,we explored the variations and determinants of C concentration of nine tissues from 216 individuals of 32 tree species,with particular attention on the effect of wood porosity(i.e.,non-porous wood,diffuse-porous wood,and ring-porous wood).The inter-tissue pattern of C concentration diverged across the three porosity types;metabolically active tissues(foliage and fine roots,except for the foliage of ring-porous species)generally had higher C levels compared with inactive wood.The poor inter-correlations between tissue C concentrations indicated a necessity of measuring tissue-and specific-C concentrations.Carbon concentration for almost all tissues generally decreased from non-porous,to diffuse-porous and to ring-porous.Tissue C was often positively correlated with tissue(foliage and wood)density and tree size,while negatively correlated with growth rate,depending on wood porosity.Our results highlight the mediating effect of type of wood porosity on the variation in tissue C among temperate species.The variations among tissues were more important than that among species.These findings provided insights on tissue C concentration variability of temperate forest species.
基金the National Natural Science Foundation of China(Nos.52001310 and 52130002)the National Science and Technology Major Project(No.J2019-VI-0019-0134)+1 种基金KC Wong Education Foundation(No.GJTD-2020-09)Institute of Metal Res earch Innovation Fund(No.2023-ZD01)。
文摘Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface.
基金The National Forestry Commission of Mexico and The Mexican National Council for Science and Technology(CONAFOR-CONACYT-115900)。
文摘Multispecies forests have received increased scientific attention,driven by the hypothesis that biodiversity improves ecological resilience.However,a greater species diversity presents challenges for forest management and research.Our study aims to develop basal area growth models for tree species cohorts.The analysis is based on a dataset of 423 permanent plots(2,500 m^(2))located in temperate forests in Durango,Mexico.First,we define tree species cohorts based on individual and neighborhood-based variables using a combination of principal component and cluster analyses.Then,we estimate the basal area increment of each cohort through the generalized additive model to describe the effect of tree size,competition,stand density and site quality.The principal component and cluster analyses assign a total of 37 tree species to eight cohorts that differed primarily with regard to the distribution of tree size and vertical position within the community.The generalized additive models provide satisfactory estimates of tree growth for the species cohorts,explaining between 19 and 53 percent of the total variation of basal area increment,and highlight the following results:i)most cohorts show a"rise-and-fall"effect of tree size on tree growth;ii)surprisingly,the competition index"basal area of larger trees"had showed a positive effect in four of the eight cohorts;iii)stand density had a negative effect on basal area increment,though the effect was minor in medium-and high-density stands,and iv)basal area growth was positively correlated with site quality except for an oak cohort.The developed species cohorts and growth models provide insight into their particular ecological features and growth patterns that may support the development of sustainable management strategies for temperate multispecies forests.
文摘Based on the analysis of different theory for glass tempering process,the“structural theory”with stress relaxation and structural relaxation effects was selected to investigate the tempering of flat glass quantificationally.The geometrical model with small size and non-homogeneous mesh were considered to build the finite element models according to the characteristics of stress field.The tempering process of flat glass with12 mm thickness was calculated with the verified finite element model.The transient and permanent stress of the central area,edge and corner end of the flat glass are obtained and analyzed.From the calculation results of basic case,the transient tensile stress at the upper surface of the central area,the center point of edge,the edge of edge,the edge of corner were 14.30,18.94,40.76 and 34.75 MPa,respectively.The transient tensile stress at these points were dangerous to promote the glass to break during the tempering.In addition,the point at the diagonal line of symmetry plane in the thickness direction,which is 14 mm from corner,has the maximum permanent tensile stress about 70.01 MPa in the flat glass after tempering.Thus,it is indicated that the corner is the weakest region in the tempered glass.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB31020302)National Natural Science Foundation of China (32170507, 31730104,31870396, and 32070450)。
文摘DEAR EDITOR,Movement patterns can reflect species-specific characteristics of individuals and animal groups at a given scale. Accurate three-dimensional(3D) assessment can quantify the relationship between movement patterns of an animal and its unique habitat. Here, we evaluated the effects of habitat structure on movement patterns of the golden snub-nosed monkey(Rhinopithecus roxellana). We used airborne light detection and ranging(LiDAR) to map the 3D structure of the temperate forest in the Qinling Mountains(Shaanxi, China).
基金Shihong Jia was financially supported by the National Natural Science Foundation of China(Grant No.32001120)the Fundamental Research Funds for the Central Universities(Grant No.31020200QD026)+1 种基金Qiulong Yin was supported by the National Natural Science Foundation of China(Grant No.32001171)Ying Luo was supported by the Innovation Capability Support Program of Shaanxi(Grant No.2022KRM090).
文摘Conspecific negative density dependence(CNDD)is a potentially important mechanism in maintaining species diversity.While previous evidence showed habitat heterogeneity and species’dispersal modes affect the strength of CNDD at early life stages of trees(e.g.,seedlings),it remains unclear how they affect the strength of CNDD at later life stages.We examined the degree of spatial aggregation between saplings and trees for species dispersed by wind and gravity in four topographic habitats within a 25-ha temperate forest dynamic plot in the Qinling Mountains of central China.We used the replicated spatial point pattern(RSPP)analysis and bivariate paircorrelation function(PCF)to detect the spatial distribution of saplings around trees at two scales,15 and 50 m,respectively.Although the signal was not apparent across the whole study region(or 25-ha),it is distinct on isolated areas with specific characteristics,suggesting that these characteristics could be important factors in CNDD.Further,we found that the gravity-dispersed tree species experienced CNDD across habitats,while for wind-dispersed species CNDD was found in gully,terrace and low-ridge habitats.Our study suggests that neglecting the habitat heterogeneity and dispersal mode can distort the signal of CNDD and community assembly in temperate forests.
文摘The microstructure and mechanical properties of titanium(Ti)-bearing medium-carbon nonquenched and tempered steel with different nitrogen content before and after hot forging were investigated through smelting,forging,and laboratory tests.The results show that the grain size of nonquenched and tempered steel was gradually refined,and the ferrite content gradually increased with an increase in nitrogen content.The grain size of the material with low nitrogen content increased abnormally,and its impact properties significantly decreased after hot forging.The grain size of nonquenched and tempered steel with higher nitrogen content was slightly larger than that before forging,and the tensile and yield strength increased,but the impact toughness was not significantly reduced.The Ti-bearing nonquenched and tempered steel showed better strength and toughness after hot forging with the addition of 0.010%0.015%nitrogen.
文摘Cold-rolled martensitic steel is an important type of advanced high-strength steel for automobile production.With martensite as its primary microstructure constituent, martensitic steel possesses exceptional high strength despite its low alloy content.As the strength of cold-rolled martensitic steel increases, the martensite and carbon content also increases, leading to a decrease in bending properties and toughness.In this paper, the effect of various tempering parameters on the bending property and impact toughness of a quenched cold-rolled martensitic steel sheet was studied.It is found that after quenching, the ductility and impact toughness of the experimental steel are improved using low-temperature heat treatment.The optimal tempering conditions for ductility and toughness are analyzed.
文摘The novel martensitic heat-resistant steel G115 was designed for thick-section boiler components of ultra-supercritical(USC) power plants at 630-650 ℃.The impact of the quenching and tempering processes on the properties and microstructure of G115 steel was explored.The samples that were quenched and tempered twice had a higher tensile strength at room temperature and 650 ℃,and the impact energy was significantly improved.The strength and impact energy increased in proportion to the increase in the first quenching temperature.The microstructure differences between the single and double quenched and tempered samples were examined using metallographic microscopy and scanning electron microscopy.The grain size of the double quenched and tempered samples was finer than that of the single quenched and tempered samples, and the tempered martensite lath is more visible, as are the carbides and other precipitates, which are finer and more uniformly distributed.As the first quenching temperature increased, the grains became coarser but more uniform.
文摘A self-developed electromagnetic induction-heating device was used to investigate the variation in the microstructure and properties of X80 pipeline steel in the rapid induction tempering process at different process parameters. The effects of the tempering condition on toughness, microstructure, size and distribution of precipitates of X80 pipeline steel were observed using a metallographic microscopy and scanning electron microscopy. Compared with the samples prepared via traditional tempering techniques, results show that the samples prepared via rapid induction tempering had improved performances. When the heating temperature is 590 ℃, at a holding time of 90 s,it was found that acicular ferrite was refined, carbonite precipitation was small, and precipitates were evenly distributed in the matrix. The low-temperature impact energy, also known as the impact absorption energy, at -40 ℃ was found to be 430.5 J for the rapid induction tempering samples and 323.2 J for the traditionally tempered sample. The low-temperature impact energy at -60 ℃ was found to be 351.3 J for the rapid induction tempered sample and 312.1 J for the tradition tempering sample.
基金Project (J09LD11) supported by Higher Educational Science and Technology Program of Shandong Province, ChinaProject (BS2009ZZ010) supported by Shandong Province Outstanding Research Award Fund for Young Scientists, China
文摘In order to study the self tempering effect on the solidification of Al-Si alloy, a setup was designed to conduct experiments. The characters of β phases in different thicknesses of Al-Si samples were investigated. The results show that the size distributions of β phases obey the logarithmic normal distribution. The Brinell hardness tests were also carried out. The tested hardness results show that the hardness distribution of the casting cooled in water is evener than that cooled in air, and its averaged value is higher than that cooled in air.
基金This is a key project of National Natural Science Foundation of China.
文摘Middle-sized chambers (40cmx40cmx20 cm) and an infrared gas analyzer (IRGA) were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which is a typical temperate forest ecosystem in the mountainous areas of Beijing. Changes of CO2 concentrations in both the atmosphere (2m above canopy) and the forest canopy (2m below the top of the canopy) together with those of net photosynthesis and soil CO2 evolution were also examined, in order to find the characteristics of CO2 exchange between the different components of the temperate forest ecosystem and the atmosphere. Atmospheric CO2 averaged (323+10) and (330+1) mol mol-1 respectively in summer and autumn. During the 24-hour measurements, large differences as much as -46 and -61 mol mol-1 respectively in the atmosphere and forest were found. Net photosynthesis of the grass layer in summer was (2. 59 9+ 1.05) mol CO2 m-2 S-1, two times of that in autumn, (1.31+0.39) mol CO2 s-1 In summer, there was much more CO2 evolved from soil than in autumn, averaging (5.18+0.75) mol CO2 m-2 s-1 and (1.96 + 0.57) (mol CO2 m-2 s-1, respectively. A significant correlation was found between soil CO2 evolution and ground temperature, with F =-0.864 2+0.310 1X,r=0.7164, P<0.001 (n=117). Both the minimal atmospheric CO2 level and the maximum net photosynthesis occurred around 14:00; and an increase in atmospheric CO2 and of soil CO2 evolution during night times were also found to be remarkable.
基金The project was supported by Japanese Society for Promotion of Sciences (15P03118).
文摘Within a forested watershed at the Uryu Experimental Forest of Hokkaido University in northern Hokkaido, overstory litterfall and related nutrient fluxes were measured at different landscape zones over two years. The wetland zone covered with Picea glehnii pure stand. The riparian zone was deciduous broad-leaved stand dominated by Alnus hirsuta and Salix spp., while the mixture of deciduous broadleaf and evergreen conifer dominated by Betula platyphylla, Quercus crispula and Abies sachalinensis distributed on the upland zone. Annual litterfall averaged 1444, 5122, and 4123 kg.hm^-2·a^-1 in the wetland, riparian and upland zones, respectively. Litterfall production peaked in September-October, and foliage litter contributed the greatest amount (73.4%-87.6 %) of the annual total litterfall. Concentrations of nutrients analyzed in foliage litter of the dominant species showed a similar seasonal variation over the year except for N in P glehnii and A. hirsuta. The nutrient fluxes for all elements analyzed were greatest on riparian zone and lowest in wetland zone. Nutrient fluxes via litterfall followed the decreasing sequence: N (11-129 kg.hm-2.aq) 〉 Ca (9-69) 〉 K (5-20) 〉 Mg (3-15) 〉 P (0.4-4.7) for all stands. Significant differences were found in litterfall production and nutrient fluxes among the different landscape components. There existed significant differences in soil chemistry between the different landscape zones. The consistently low soil C:N ratios at the riparian zone might be due to the higher-quality litter inputs (largely N-fixing alder).
基金Project(6990-HT-XEX-03-(2008)-0137) supported by the Major Special Project of Science and Technology of China National Petroleum Corporation
文摘The tempering microstructure and mechanical properties of X80 steel used for heating-bent pipe were analyzed. The results show that the microstructure of X80 steel tempered at 550 ℃ and 600 ℃ is bainitic ferrite (BF)+granular bainite (GB), and partial ferrite laths in BF merge and broaden. The interior sub-lath boundary of some GB begins to disappear due to merging, the M/A constituent (a mixture of martensite plus retained austenite) in GB is orbicular. At the two tempering temperatures the tested X80 steel shows a certain degree of tempering stability. After being tempered at 650 ℃, the microstructure of X80 steel is GB+quasi-polygonal ferrite(QF), and the original BF laths have merged to form smaller GB crystal grains. The reason is that the steel shows better match of strength and toughness. After being tempered at 700 ℃ , the microstructure of X80 steel is composed mainly of QF, which can improve the plasticity but decline severely the yield strength of X80, and the M/A constituent assembles and grows up at the grain boundary of QF, resulting in excellent lower low-temperature toughness of X80.
基金supported by the Key State Science and Technology Projects(Grant No.2011ZX04016-061 and No.2012ZX06004-001-001-005)
文摘The HAZ microstructure and performance of Quenching and Tempering mode temper bead welding and general welded joints which were made on SA508-3 steel of 60 mm thickness were compared in this article. The result shows that tempering sorbite which has excellent overall performance was obtained in both modes. The microstructure of Quenching and Tempering mode welded joints got more fine grain. Even though the hardness of tempering bead welded joints is higher than the general one,it still meets the standards which is lower than 350 HV. The impact absorbing energy of each district of tempering bead welded joints HAZ reached 170 J,which is equal to general one.
文摘The variations of microstructures and mechanical properties of steels 15CrMnMoV, 18Mn2CrMoB,18Cr2Ni4W,30CrMnSi,30CrMnSiNi2 and 40CrMnSiMoV,which were tempered at different temperatures after austempering and continuous cooling at given rates, have been investigated.Based on the experimental results,the behaviour and mechanism of tempered bainite embrittlement(TBE)have been discussed.Finally,the theoretical and prac- tical basis for selecting the optimum tempering temperature of steels with bainite structure af- ter heat treatment are proposed.
文摘Soil carbon dioxide emission: soil respiration is representing a major contributor of accumulating carbon dioxide in the atmosphere that aids to accelerate global warming and altering the climate. Soil temperature, soil water content, sun light and vegetation are considered most common regulators of soil respiration variations in ecosystem. The soil respiration was measured in grassland intended to examine how the soil respiration changed with varying climatic factors, for two years (2015 and 2016) in temperate grassland of Annapurna Conservation Area (ACA), Nepal. In the study, soil temperature accounted exponential function of soil respiration variation at 42.9%, 19.1% and 23.3%, and temperature sensitivity of the soil respiration (Q10) obtained at 6.2, 1.4 and 1.8 in October 2015 and April 2016 and both the measurements were combined, respectively. Significant negative (R2 = 0.50, p < 0.05, October 2015) and positive (R2 = 0.084, p < 0.05, April 2016) exponential function of soil respiration and soil water content were determined, where high soil respiration values were always measured between 30% and 35% of the soil water content. However, linear significant relationship was determined (R2 = 0.376, p < 0.05) between soil respiration and photosynthetic photon flux density (PPFD). Soil respiration value averaged in October 2015 was 357 mg CO2 m-2 h-1 and in April 2016 it was 444.6 mg CO2 m-2 h-1. Above- and below-ground plant biomasses were obtained at 231.1 g d w m-2 and 1538.8 g d w m-2 in October, and at 449.9 g d w m-2 and 349.0 g d w m-2 in April, respectively. This study showed variation of soil respiration in relation to the factors such as soil temperature, soil water content and photosynthetic photon flux density signifying their importance in governing ecosystem function and carbon balance of the temperate grassland ecosystem.
基金The research leading to these results further received funding grants ANPCYT PICT 2011-130 Raíces of the Agencia Nacional de Promociones Científicas of Argentina to IRS and MPH,and from the European Union’s Horizon 2020 research and innovation program under grant agreement No.730984,ASSEMBLEPLUS2019359 Project awarded to FDIt is further a contribution to CoastCarb(Funding ID 872609,H2020,MSCA-RISE-2019,Research and Innovation Staff Exchange).
文摘Under the present changing climate conditions and the observed temperature increase,it is of high importance to understand its effects on aquatic microbial life,and organisms’adaptations at the biochemical level.To adjust to temperature or salinity stress and avoid cell damage,organisms alter their degree of fatty acids(FAs)saturation.Thus,temperature is expected to have strong effects on both the quantity and quality of FAs in aquatic microorganisms.Here we review some recent findings about FAs sensitivity to climate change in contrasting environments.Overall,heat waves may induce changes in the relative abundance of polyunsaturated FAs(PUFA).However,the impact of the exposure to warming waters is different in temperate and polar environments.In cold marine waters,high concentration of omega-3(ω3)FAs such as eicosapentaenoic acid(EPA)is promoted due to the activation of the desaturase enzyme.In this way,cells have enough energy to produce or activate antioxidant protection mechanisms and avoid oxidative stress due to heat waves.Contrastingly,under high irradiance and heat wave conditions in temperate environments,photosystems’protection is achieved by decreasing EPA concentration due to desaturase sensitivity.Essential FAs are transferred in aquatic food webs.Therefore,any alteration in the production of essential FAs by phytoplankton(the main source ofω3)due to climate warming can be transferred to higher trophic levels,with cascading effects for the entire aquatic ecosystem.