Overgrazing has been considered one of the maj or causes that trigger shrub encroachment of grassland. Proliferation of shrubs in grassland is recognized as an important indicator of grassland degradation and desertif...Overgrazing has been considered one of the maj or causes that trigger shrub encroachment of grassland. Proliferation of shrubs in grassland is recognized as an important indicator of grassland degradation and desertification. In China, various conservation measures, including enclosures to reduce livestock grazing, have been taken to reverse the trend of grassland desertification, yet shrubs have been reported to increase in the grasslands over the past decades. In late 2007, we set up a 400-m-by-50-m exclosure in a long-term overgrazed temperate grassland in Inner Mongolia, with the ob- jective to quantify the spatiotemporal relationship between vegetation dynamics, soil variables, and grazing exclusion. Soil moisture was continuously monitored within the exclosure, and cover and aboveground biomass of the shrubs were measured inside the exclosure in 2007, 2009, 2010, 2012, and 2013, and outside the exclosure in 2012 and 2013. We found the average shrub cover and biomass significantly increased in the six years by 103 % and 120%, respectively. The result supported the hypothesis that releasing grazing pressure following long-term overgrazing tends to trigger shrub invasion into grassland. Our results, limited to a single gradient, suggest that any conservation measures with quick release of overgrazing pressure by enclosure or other similar means might do just the opposite to accelerate shrub en- croachment in grassland. The changes in vegetation cover and biomass were regressed on the temporal average of the soil moisture content by means of the generalized least square technique to quantify the effect of the spatial autocor- relation. The result indicates that the grass cover and biomass significantly increased with the top, but decreased with the bottom layer soil moisture. The shrub cover and biomass, on the other hand, decreased with the top, but increased with bottom soil moisture, although the regression coefficients for the shrubs were not statistically significant. Hence this study supports the two-layered soil model which assumes grasses and shrubs use belowground resources in dif- ferent depths.展开更多
In order to improve accuracy of soil moisture inversion using remote sensing, a new thermal inertia model is proposed in this paper. The improved model needs only surface maximum temperature as the temperature paramet...In order to improve accuracy of soil moisture inversion using remote sensing, a new thermal inertia model is proposed in this paper. The improved model needs only surface maximum temperature as the temperature parameter input instead of input of the surface temperature difference, as well as the surface sensible and latent fluxes are introduced into boundary conditions of thermal conductivity equation. Furthermore, surface soil conductive heat transfer equation of two-layer model is used to solve the soil thermal inertia so that the remote sensing thermal inertia method can be ap- plied to regions with better-covered vegetation, but usually only for the bare areas or worse vegetation covered areas. The model has been tested at several locations in the area of west Inner Mongolia. Comparing the simulation of the new model with the measurements obtained by apparent thermal inertia and by field test, the result shows that the inertia thermal model can be used to estimate soil moisture in more reasonable accuracy.展开更多
基金supported by the National Science Foundations of China with Grant No.41171445
文摘Overgrazing has been considered one of the maj or causes that trigger shrub encroachment of grassland. Proliferation of shrubs in grassland is recognized as an important indicator of grassland degradation and desertification. In China, various conservation measures, including enclosures to reduce livestock grazing, have been taken to reverse the trend of grassland desertification, yet shrubs have been reported to increase in the grasslands over the past decades. In late 2007, we set up a 400-m-by-50-m exclosure in a long-term overgrazed temperate grassland in Inner Mongolia, with the ob- jective to quantify the spatiotemporal relationship between vegetation dynamics, soil variables, and grazing exclusion. Soil moisture was continuously monitored within the exclosure, and cover and aboveground biomass of the shrubs were measured inside the exclosure in 2007, 2009, 2010, 2012, and 2013, and outside the exclosure in 2012 and 2013. We found the average shrub cover and biomass significantly increased in the six years by 103 % and 120%, respectively. The result supported the hypothesis that releasing grazing pressure following long-term overgrazing tends to trigger shrub invasion into grassland. Our results, limited to a single gradient, suggest that any conservation measures with quick release of overgrazing pressure by enclosure or other similar means might do just the opposite to accelerate shrub en- croachment in grassland. The changes in vegetation cover and biomass were regressed on the temporal average of the soil moisture content by means of the generalized least square technique to quantify the effect of the spatial autocor- relation. The result indicates that the grass cover and biomass significantly increased with the top, but decreased with the bottom layer soil moisture. The shrub cover and biomass, on the other hand, decreased with the top, but increased with bottom soil moisture, although the regression coefficients for the shrubs were not statistically significant. Hence this study supports the two-layered soil model which assumes grasses and shrubs use belowground resources in dif- ferent depths.
文摘In order to improve accuracy of soil moisture inversion using remote sensing, a new thermal inertia model is proposed in this paper. The improved model needs only surface maximum temperature as the temperature parameter input instead of input of the surface temperature difference, as well as the surface sensible and latent fluxes are introduced into boundary conditions of thermal conductivity equation. Furthermore, surface soil conductive heat transfer equation of two-layer model is used to solve the soil thermal inertia so that the remote sensing thermal inertia method can be ap- plied to regions with better-covered vegetation, but usually only for the bare areas or worse vegetation covered areas. The model has been tested at several locations in the area of west Inner Mongolia. Comparing the simulation of the new model with the measurements obtained by apparent thermal inertia and by field test, the result shows that the inertia thermal model can be used to estimate soil moisture in more reasonable accuracy.