Morphology and crystal structure of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr (mass fraction, %) alloy were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. Com...Morphology and crystal structure of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr (mass fraction, %) alloy were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. Compositions were determined for β phase using thin foil energy dispersive spectroscopy. Precipitation at 400 ℃ involves formation of platelet and block-shaped β phase. The orientation relationship is and between β precipitate phase and α-Mg matrix with habit planes parallel to , and a composition of Mg5(Y0.4Gd0.4Nd0.2) is suggested for the β phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy.展开更多
The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent r...The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent research focused on the active state of Mg dissolution,leading to unresolved effects of secondary phases adjacent to a stableα-solid solution passive layer.The present study investigates the fundamental electrochemical corrosion mechanisms of three different Laves phases with varying phase morphologies and phase fractions in the passive state of Mg-Al-Ca alloys.The microstructure was characterized by(transmission-)electron microscopy and synchrotron-based transmission X-ray microscopy.The electrochemical corrosion resistance was determined with a standard three-electrode setup and advanced in-situ flow cell measurements.A new electrochemical activity sequence(C15>C36>α-Mg>C14)was obtained,as a result of a stable passive layer formation on theα-solid solution.Furthermore,nm-scale Mg-rich precipitates were identified within the Laves phases,which tend to inhibit the corrosion kinetics.展开更多
The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(...The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(28)Al_(4)Ti_(3)Co_(3) immiscible high-entropy alloy(HEA)was developed.After vacuum arc melting and copper mold suction casting,this HEA exhibits a unique phase separation microstructure,which consists of striped Cu-rich regions and Fe-rich region.Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region.The aging alloy is further strengthened by a L1_(2)-Ni_(3)(AlTi)nanoprecipitates,achieving excellent yield strength(1185 MPa)and uniform ductility(~8.8%).The differential distribution of the L1_(2) nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions,which increased the strain gradient and thus improved hetero-deformation induced(HDI)hardening.This work provides a new route to improve the HDI hardening of Fe-Cu alloys.展开更多
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext...This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86.展开更多
A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in...A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.展开更多
To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the p...To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061.展开更多
In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after...In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.展开更多
This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Are...This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Area from 20:00 on August 21 to 07:00 on August 22,2022.The analysis applied the Z-R relationship method for radar-based precipitation estimation and evaluated the QPE algorithm s performance using scatter density plots and binary classification scores.The results indicated that the QPE algorithm accurately estimates light to moderate rainfall but significantly underestimates heavy rainfall.The study identified disparities in the predictive accuracy of the QPE algorithm across various precipitation intensity ranges,offering essential insights for the further refinement of QPE techniques.展开更多
Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step s...Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.展开更多
Understanding the influence of purities on the electrochemical performance of pure aluminum(Al)in alkaline media for Al–air batteries is significant.Herein,we comprehensively investigate secondary phase precipitate(S...Understanding the influence of purities on the electrochemical performance of pure aluminum(Al)in alkaline media for Al–air batteries is significant.Herein,we comprehensively investigate secondary phase precipitate(SPP)-induced localized corrosion of pure Al in NaOH solution mainly based on quasi-in-situ and cross-section observations under scanning electron microscopy coupled with finite element simulation.The experimental results indicate that Al–Fe SPPs appear as clusters and are coherent with the Al substrate.In alkaline media,Al–Fe SPPs exhibit more positive potentials than the substrate,thus aggravating localized galvanic corrosion as cathodic phases.Moreover,finite element simulation indicates that the irregular geometry coupled with potential difference produces the non-uniform current density distribution inside the SPP cluster,and the current density on the Al substrate gradually decreases with distance.展开更多
The microstructure and phase precipitate behavior and their effects on the room temperature hardness and impact toughness of Inconel 740H aged at 750 ℃ for 10000 h were investigated by SEM, TEM and mechanical analys...The microstructure and phase precipitate behavior and their effects on the room temperature hardness and impact toughness of Inconel 740H aged at 750 ℃ for 10000 h were investigated by SEM, TEM and mechanical analysis. The as-received alloy shows a low hardness value of HB 168 and a highest toughness value of 96 J. After an aging treatment at 800 ℃ for 16 h and cooled in air (standard heat-treated condition), fine γ′ phase particles precipitate within the grains and small carbide particles are located at the grain boundaries. The hardness increases to HB 304 and the impact toughness decreases to 15 J after standard heat treatment. A maximum hardness value of HB 331 is achieved for the alloy aged at 750 ℃ for 300 h. With increasing the aging time from 300 to 10000 h, a decrease of the hardness and toughness is observed along with an enhanced quantity of M23C6 particles and the coarsening of γ′ phase.展开更多
As reported in our previous works, a Mg-7Gd-5Y-1Nd-0.5Zr alloy recently developed exhibited remarkable age-hardening responses and excellent mechanical properties at both room and elevated temperatures. In Mg-7Gd-5Y-1...As reported in our previous works, a Mg-7Gd-5Y-1Nd-0.5Zr alloy recently developed exhibited remarkable age-hardening responses and excellent mechanical properties at both room and elevated temperatures. In Mg-7Gd-5Y-1Nd-0.5Zr alloy, the β pre- cipitate phase was assumed to he one of the main strengthening phases in peak-aged samples. This study aimed to determine the crys- tal structure and orientation relationship of the β precipitate phase in Mg-7Gd-5Y-INd-0.5Zr alloy using transmission electron mi- croscopy and high-resolution electron microscopy. The results indicated that the β precipitate had a face-centered cubic structure with a lattice parameter of a=2.22 nm. The orientation relationship between the β precipitate phase and the ct-Mg matrix was (i-12)β(1-100)α, [110]β[0001 ]α. Theβ plates formed on prismatic planes could play an important role in alloy strengthening by proving effective barriers to gliding dislocations. A single β plate often contained several domains of (1 11)β twin-related variants. A composition of Mgs(Y0.4Gdo.4Nd0.2) was suggested for the β phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy.展开更多
By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation a...By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology.展开更多
Precipitation habits plays a decisive role in strengthening materials,especially for Mg alloys the non-basal plane precipitation is necessary but very limited.Generally,the precipitates would nucleate and grow up in a...Precipitation habits plays a decisive role in strengthening materials,especially for Mg alloys the non-basal plane precipitation is necessary but very limited.Generally,the precipitates would nucleate and grow up in a specific habit plane owing to the constraint of free-energy minimization of the system.Herein,in an aged ultralight Mg-Li-Zn alloy,we confirmed that the precipitates dominated by C15 Laves structure could form in a variety of habit planes,to generate three forms of strengthening-phases,i.e.,precipitate-rod,precipitate-lath,and precipitate-plate.Among which,the precipitate-plates are on basal plane as usually but precipitate-rods/laths are on non-basal plane,and such non-basal precipitates would transform into the basal(Mg,Li)Zn_(2)Laves structure with prolonged aging.These findings are interesting to understand the precipitation behaviors of multi-domain Laves structures in hexagonal close-packed crystals,and expected to provide a guidance for designing ultralight high-strength Mg-Li based alloys via precipitation hardening on the non-basal planes.展开更多
The evolution of microstructure,elemental segregation,and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling(ZMLMC) experiments.Comparing v...The evolution of microstructure,elemental segregation,and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling(ZMLMC) experiments.Comparing various nickel-based superalloys,the primary dendrite spacing is significantly linearly correlated with G^(-1/2)V^(-1/4) at high cooling rates,where G and V are temperature gradient and drawing rate,respectively.As the cooling rate decreases,the primary dendrite spacing increases in a dispersive manner.The secondary dendrite arm spacing is significantly correlated with(GV)^(-0.4) for all cooling rate ranges.The degree of elemental segregation increases and then decreases as the cooling rate increases,which is due to the competition between solute counter-diffusion and dendrite tip subcooling.With increasing the solidification rate,the size of γ′,carbides,and non-metallic inclusions gradually decreases.The morphology of the γ′ precipitate changes from plume-like to cubic to spherical.The morphology of carbide changes from block to fine-strip then to Chinese-script.The morphology of carbide is controlled by both dendrite interstitial shape and element diffusion.The inclusions are mainly composite inclusions,which usually show the growth of Ti(C,N) with oxide as the heterogeneous nucleation center and carbide on the outer surface of the carbonitride.As the cooling rate increases,the number density of composite inclusions first increases and then decreases,which is closely related to the elemental segregation behavior.展开更多
Crystal structures,growth characteristics,and transformation of the precipitates in a Mg-7Gd-5Y-1Nd-2Zn-0.5Zr(wt.%)alloy aged at 200℃for various durations were investigated using transmission electron microscopy(TEM)...Crystal structures,growth characteristics,and transformation of the precipitates in a Mg-7Gd-5Y-1Nd-2Zn-0.5Zr(wt.%)alloy aged at 200℃for various durations were investigated using transmission electron microscopy(TEM)and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).A detailed Mg-Gd type precipitation sequence for Mg-Gd-Y-Nd-Zn alloys was proposed as follows:supersaturated solid solution→solute clusters→zigzag GP zones+β''(I)→β'→β'+protrusions/joints→pre-β_(1)→β_(1)→β.Solute clusters formed in the early stage of aging consisted of one or more rare-earth(RE)/Zn-rich atomic columns with different configura-tions.RE/Zn-rich solute clusters grew into zigzag GP zones andβ''(I)as aging time extending.The paired-zigzag GP zones might grow up to beβ'precipitates directly.In the peak-and plat-aging stages,the number of solute clusters in the matrix decreased until they disappeared,and most existed as zigzag arrays and super hexagons.Protrusions formed at the end ofβ'at an angle of 120°,then grew into joints when two differentβ'variants encountered together.Protrusions/joints comprise zigzag arrays,super-hexagons,β'F,β''(II),β_(T),and hybrid structures rich in solute atoms,and act as catalysts for the growth of theβ'variants.Largerβ'grow by joints consumption while smallerβ'precipitates dissolve to form joints.β_(1)precipitates essentially evolve from pre-β_(1)precipitates,with four-point diamond structures formed by RE/Zn atomic substitution and atomic migration based on the originalα-Mg structure.展开更多
The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approach...The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy.展开更多
Precipitation strengthening is a key strategy for improving the overall mechanical properties of Mg alloys. In Mg-Al alloys, basal precipitates are known to strengthen against twinning, resulting in an increase in the...Precipitation strengthening is a key strategy for improving the overall mechanical properties of Mg alloys. In Mg-Al alloys, basal precipitates are known to strengthen against twinning, resulting in an increase in the critical resolved shear stress(CRSS) necessary for continued deformation. Although several models have been proposed to quantify the influence of precipitate shape, size, and distribution on the CRSS, the accuracy, scope, and applicability of these models has not been fully assessed. Accordingly, the objectives of this study are:(i)to analyze the accuracy of analytical models proposed in the literature for precipitation strengthening against twin thickening and propagation(in Mg-Al alloys) using phase-field(PF) simulations,(ii) to propose modifications to these model forms to better capture the observed trends in the PF data, and(iii) to subsequently test the predictiveness of the extended models in extrapolating to experimental strengthening data.First, using an atomistically-informed phase-field method, the interactions between migrating twin boundaries(during the propagation and thickening stages) and basal plates are simulated for different precipitate sizes and arrangements. In general, comparison of the increase in CRSS determined from the PF simulations and the predictions from four precipitation strengthening models reveals that modifications are necessary to the model forms to extend their applicability to precipitation strengthening against both twin thickening and propagation. A subsequent comparison between predictions from the extended models and experimental strengthening data for peak age-hardened samples reveals that the(extended) single dislocation and dislocation wall models provide reasonably accurate values of the increase in CRSS.Ultimately, the results presented here help elucidate the fidelity and applicability of the various hardening models in predicting precipitation strenghtening effects in technologically important alloys.展开更多
On the basis of the microscopic phase-field dynamic model and the microelasticity theory, the characteristics of the coarsening behavior of γ' phase in Ni-Al alloys have been systematically studied in a certain volu...On the basis of the microscopic phase-field dynamic model and the microelasticity theory, the characteristics of the coarsening behavior of γ' phase in Ni-Al alloys have been systematically studied in a certain volume fraction of the precipitates. It was found that the initial irregular shape, randomly distributed γ' phase, gradually transformed into cuboidal shape, regularly aligned along the [100] and [010] directions, and a highly preferential selected microstructure was formed during the later stage of precipitation. The volume fraction of the precipitates produced some effects on the precipitate morphology but did not produce an obvious effect on the regularities of precipitate distribution. The coarsening rate constant from the cubic growth law decreased as a function of volume fraction for small volume fractions, remained constant for intermediate volume fractions, and increased as a function of volume fraction for large volume fractions. During the coherent coarsening process, four "splitting" patterns between γ' phases, which belonged to different antiphase domains, were produced via particle aggregation, such as an L-shaped pattern, a doublet, a triplet, and a quartet.展开更多
基金Project (2011DAE22B01) supported by the Key Technologies Program of China during the 12th Fire-Year Plan Period
文摘Morphology and crystal structure of β precipitate phase in Mg-7Gd-5Y-1Nd-0.5Zr (mass fraction, %) alloy were characterized by optical microscopy, scanning electron microscopy and transmission electron microscopy. Compositions were determined for β phase using thin foil energy dispersive spectroscopy. Precipitation at 400 ℃ involves formation of platelet and block-shaped β phase. The orientation relationship is and between β precipitate phase and α-Mg matrix with habit planes parallel to , and a composition of Mg5(Y0.4Gd0.4Nd0.2) is suggested for the β phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy.
基金the financial support of the Deutsche Forschungsgemeinschaft(DFG)of the Collaborative Research Center(CRC)1394“Structural and Chemical Atomic Complexity-from defect phase diagrams to material properties”–project ID 409476157the Excellence Strategy of the Federal Government and the L?nder project IDG:(DE-82)EXS-SF-OPSF596。
文摘The electrochemical corrosion mechanisms of Mg alloys were extensively studied in previous investigations of different chemical com-positions,modified surface states and various electrolyte conditions.However,recent research focused on the active state of Mg dissolution,leading to unresolved effects of secondary phases adjacent to a stableα-solid solution passive layer.The present study investigates the fundamental electrochemical corrosion mechanisms of three different Laves phases with varying phase morphologies and phase fractions in the passive state of Mg-Al-Ca alloys.The microstructure was characterized by(transmission-)electron microscopy and synchrotron-based transmission X-ray microscopy.The electrochemical corrosion resistance was determined with a standard three-electrode setup and advanced in-situ flow cell measurements.A new electrochemical activity sequence(C15>C36>α-Mg>C14)was obtained,as a result of a stable passive layer formation on theα-solid solution.Furthermore,nm-scale Mg-rich precipitates were identified within the Laves phases,which tend to inhibit the corrosion kinetics.
基金Projects(52001083,52171111,U2141207)supported by the National Natural Science Foundation of ChinaProject(LH2020E060)supported by the Natural Science Foundation of Heilongjiang,China。
文摘The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(28)Al_(4)Ti_(3)Co_(3) immiscible high-entropy alloy(HEA)was developed.After vacuum arc melting and copper mold suction casting,this HEA exhibits a unique phase separation microstructure,which consists of striped Cu-rich regions and Fe-rich region.Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region.The aging alloy is further strengthened by a L1_(2)-Ni_(3)(AlTi)nanoprecipitates,achieving excellent yield strength(1185 MPa)and uniform ductility(~8.8%).The differential distribution of the L1_(2) nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions,which increased the strain gradient and thus improved hetero-deformation induced(HDI)hardening.This work provides a new route to improve the HDI hardening of Fe-Cu alloys.
基金supported by the National Research Foundation of Korea(NRFgrant nos.2019R1A2C1085272 and RS-2023-00244478)funded by the Ministry of Science,ICT,and Future Planning(MSIP,South Korea)。
文摘This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86.
基金Project support provided by the National Natural Science Foundation of China(Grant No.12075200)the National Key Research and Development Program of China(Grant No.2022YFB3706004)。
文摘A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.
基金Funded by Natural Science Foundation of Guangdong Province,China (No.2017A030313330)Science and Technology Program of Guangzhou (No.201804020040)。
文摘To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061.
基金supported by the National Natural Science Foundation of China(Grant Nos.51871222,52171021,and 51801214)Liaoning Provincial Natural Science Foundation(2019-MS-335)the research fund of SYNL。
文摘In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.
文摘This study utilized data from an X-band phased array weather radar and ground-based rain gauge observations to conduct a quantitative precipitation estimation(QPE)analysis of a heavy rainfall event in Xiong an New Area from 20:00 on August 21 to 07:00 on August 22,2022.The analysis applied the Z-R relationship method for radar-based precipitation estimation and evaluated the QPE algorithm s performance using scatter density plots and binary classification scores.The results indicated that the QPE algorithm accurately estimates light to moderate rainfall but significantly underestimates heavy rainfall.The study identified disparities in the predictive accuracy of the QPE algorithm across various precipitation intensity ranges,offering essential insights for the further refinement of QPE techniques.
基金supported by the National Natural Science Foundation of China(Nos.52201203 and 52171107)the Hebei Provincial Natural Science Foundation,China(No.E2021501026)+1 种基金the National Natural Science Foundation of China-Joint Fund of Iron and Steel Research(No.U1960204)the“333”Talent Project of Hebei Province,China(No.B20221001).
文摘Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84.
基金financially supported by the National Natural Science Foundation of China(No.51901018)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2019 QNRC001)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.FRF-AT-20-07,06500119)the Natural Science Foundation of Beijing Municipality,China(No.2212037)the National Science and Technology Resources Investigation Program of China(No.2019FY 101400)the Southwest Institute of Technology and Engineering Cooperation Fund,China(No.HDHDW5902020107)。
文摘Understanding the influence of purities on the electrochemical performance of pure aluminum(Al)in alkaline media for Al–air batteries is significant.Herein,we comprehensively investigate secondary phase precipitate(SPP)-induced localized corrosion of pure Al in NaOH solution mainly based on quasi-in-situ and cross-section observations under scanning electron microscopy coupled with finite element simulation.The experimental results indicate that Al–Fe SPPs appear as clusters and are coherent with the Al substrate.In alkaline media,Al–Fe SPPs exhibit more positive potentials than the substrate,thus aggravating localized galvanic corrosion as cathodic phases.Moreover,finite element simulation indicates that the irregular geometry coupled with potential difference produces the non-uniform current density distribution inside the SPP cluster,and the current density on the Al substrate gradually decreases with distance.
基金Project(TN-15-TYK05) supported by the Research and Development Fund of Thermal Power Research Institute(TPRI),ChinaProject(2012AA050501)supported by the National High-tech Research and Development Program of China
文摘The microstructure and phase precipitate behavior and their effects on the room temperature hardness and impact toughness of Inconel 740H aged at 750 ℃ for 10000 h were investigated by SEM, TEM and mechanical analysis. The as-received alloy shows a low hardness value of HB 168 and a highest toughness value of 96 J. After an aging treatment at 800 ℃ for 16 h and cooled in air (standard heat-treated condition), fine γ′ phase particles precipitate within the grains and small carbide particles are located at the grain boundaries. The hardness increases to HB 304 and the impact toughness decreases to 15 J after standard heat treatment. A maximum hardness value of HB 331 is achieved for the alloy aged at 750 ℃ for 300 h. With increasing the aging time from 300 to 10000 h, a decrease of the hardness and toughness is observed along with an enhanced quantity of M23C6 particles and the coarsening of γ′ phase.
基金supported by the National "Twelfth Five-Year Plan" Key Technologies Program of China (2011DAE22B01)
文摘As reported in our previous works, a Mg-7Gd-5Y-1Nd-0.5Zr alloy recently developed exhibited remarkable age-hardening responses and excellent mechanical properties at both room and elevated temperatures. In Mg-7Gd-5Y-1Nd-0.5Zr alloy, the β pre- cipitate phase was assumed to he one of the main strengthening phases in peak-aged samples. This study aimed to determine the crys- tal structure and orientation relationship of the β precipitate phase in Mg-7Gd-5Y-INd-0.5Zr alloy using transmission electron mi- croscopy and high-resolution electron microscopy. The results indicated that the β precipitate had a face-centered cubic structure with a lattice parameter of a=2.22 nm. The orientation relationship between the β precipitate phase and the ct-Mg matrix was (i-12)β(1-100)α, [110]β[0001 ]α. Theβ plates formed on prismatic planes could play an important role in alloy strengthening by proving effective barriers to gliding dislocations. A single β plate often contained several domains of (1 11)β twin-related variants. A composition of Mgs(Y0.4Gdo.4Nd0.2) was suggested for the β phase in Mg-7Gd-5Y-1Nd-0.5Zr alloy.
基金Projects(51371081,11427806,51471067,51171063) supported by the National Natural Science Foundation of ChinaProject(2009CB623704) supported by the National Basic Research Program of China
文摘By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology.
基金the National Natural Science Foundation of China(Grant No.51525101,No.51971053,No.52101129)the Project of Promoting Talents in Liaoning Province(No.XLYC1808038)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.N2002018)the Project funded by China Postdoctoral Science Foundation(2020M670774)。
文摘Precipitation habits plays a decisive role in strengthening materials,especially for Mg alloys the non-basal plane precipitation is necessary but very limited.Generally,the precipitates would nucleate and grow up in a specific habit plane owing to the constraint of free-energy minimization of the system.Herein,in an aged ultralight Mg-Li-Zn alloy,we confirmed that the precipitates dominated by C15 Laves structure could form in a variety of habit planes,to generate three forms of strengthening-phases,i.e.,precipitate-rod,precipitate-lath,and precipitate-plate.Among which,the precipitate-plates are on basal plane as usually but precipitate-rods/laths are on non-basal plane,and such non-basal precipitates would transform into the basal(Mg,Li)Zn_(2)Laves structure with prolonged aging.These findings are interesting to understand the precipitation behaviors of multi-domain Laves structures in hexagonal close-packed crystals,and expected to provide a guidance for designing ultralight high-strength Mg-Li based alloys via precipitation hardening on the non-basal planes.
基金financially supported by the National Key R&D Program of China(No.2021YFB3700402)the National Natural Science Foundation of China(Nos.5187 4103,52074092,and 51874024)。
文摘The evolution of microstructure,elemental segregation,and precipitation in GH4742 superalloy under a wide range of cooling rates was investigated using zonal melting liquid metal cooling(ZMLMC) experiments.Comparing various nickel-based superalloys,the primary dendrite spacing is significantly linearly correlated with G^(-1/2)V^(-1/4) at high cooling rates,where G and V are temperature gradient and drawing rate,respectively.As the cooling rate decreases,the primary dendrite spacing increases in a dispersive manner.The secondary dendrite arm spacing is significantly correlated with(GV)^(-0.4) for all cooling rate ranges.The degree of elemental segregation increases and then decreases as the cooling rate increases,which is due to the competition between solute counter-diffusion and dendrite tip subcooling.With increasing the solidification rate,the size of γ′,carbides,and non-metallic inclusions gradually decreases.The morphology of the γ′ precipitate changes from plume-like to cubic to spherical.The morphology of carbide changes from block to fine-strip then to Chinese-script.The morphology of carbide is controlled by both dendrite interstitial shape and element diffusion.The inclusions are mainly composite inclusions,which usually show the growth of Ti(C,N) with oxide as the heterogeneous nucleation center and carbide on the outer surface of the carbonitride.As the cooling rate increases,the number density of composite inclusions first increases and then decreases,which is closely related to the elemental segregation behavior.
基金supported by the National Natural Science Foundation of China(51871195)Youth Fund Project of GRINM(G12620213129038)Henan Provincial Department of Science and Technology Research Project(No.222102230113).
文摘Crystal structures,growth characteristics,and transformation of the precipitates in a Mg-7Gd-5Y-1Nd-2Zn-0.5Zr(wt.%)alloy aged at 200℃for various durations were investigated using transmission electron microscopy(TEM)and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).A detailed Mg-Gd type precipitation sequence for Mg-Gd-Y-Nd-Zn alloys was proposed as follows:supersaturated solid solution→solute clusters→zigzag GP zones+β''(I)→β'→β'+protrusions/joints→pre-β_(1)→β_(1)→β.Solute clusters formed in the early stage of aging consisted of one or more rare-earth(RE)/Zn-rich atomic columns with different configura-tions.RE/Zn-rich solute clusters grew into zigzag GP zones andβ''(I)as aging time extending.The paired-zigzag GP zones might grow up to beβ'precipitates directly.In the peak-and plat-aging stages,the number of solute clusters in the matrix decreased until they disappeared,and most existed as zigzag arrays and super hexagons.Protrusions formed at the end ofβ'at an angle of 120°,then grew into joints when two differentβ'variants encountered together.Protrusions/joints comprise zigzag arrays,super-hexagons,β'F,β''(II),β_(T),and hybrid structures rich in solute atoms,and act as catalysts for the growth of theβ'variants.Largerβ'grow by joints consumption while smallerβ'precipitates dissolve to form joints.β_(1)precipitates essentially evolve from pre-β_(1)precipitates,with four-point diamond structures formed by RE/Zn atomic substitution and atomic migration based on the originalα-Mg structure.
基金Guangzhou Science and Technology Plan Project(202103000030)Guangdong Meteorological Bureau Science and Technology Project(GRMC2020Z08)a project co-funded by the Development Team of Radar Application and Severe Convection Early Warning Technology(GRMCTD202002)。
文摘The performance of different quantitative precipitation estimation(QPE) relationships is examined using the polarimetric variables from the X-band polarimetric phased-array radars in Guangzhou,China.Three QPE approaches,namely,R(ZH),R(ZH,ZDR) and R(KDP),are developed for horizontal reflectivity,differential reflectivity and specific phase shift rate,respectively.The estimation parameters are determined by fitting the relationships to the observed radar variables using the T-matrix method.The QPE relationships were examined using the data of four heavy precipitation events in southern China.The examination shows that the R(ZH) approach performs better for the precipitation rate less than 5 mm h-1, and R(KDP) is better for the rate higher than 5 mm h-1, while R(ZH,ZDR) has the worst performance.An adaptive approach is developed by taking the advantages of both R(ZH) and R(KDP) approaches to improve the QPE accuracy.
基金fully funded by the U.S.Dept.of Energy,Office of Basic Energy Sciences Project FWP 06SCPE401supported by the U.S.Department of Energy National Nuclear Security Administration under Contract No.89233218CNA000001。
文摘Precipitation strengthening is a key strategy for improving the overall mechanical properties of Mg alloys. In Mg-Al alloys, basal precipitates are known to strengthen against twinning, resulting in an increase in the critical resolved shear stress(CRSS) necessary for continued deformation. Although several models have been proposed to quantify the influence of precipitate shape, size, and distribution on the CRSS, the accuracy, scope, and applicability of these models has not been fully assessed. Accordingly, the objectives of this study are:(i)to analyze the accuracy of analytical models proposed in the literature for precipitation strengthening against twin thickening and propagation(in Mg-Al alloys) using phase-field(PF) simulations,(ii) to propose modifications to these model forms to better capture the observed trends in the PF data, and(iii) to subsequently test the predictiveness of the extended models in extrapolating to experimental strengthening data.First, using an atomistically-informed phase-field method, the interactions between migrating twin boundaries(during the propagation and thickening stages) and basal plates are simulated for different precipitate sizes and arrangements. In general, comparison of the increase in CRSS determined from the PF simulations and the predictions from four precipitation strengthening models reveals that modifications are necessary to the model forms to extend their applicability to precipitation strengthening against both twin thickening and propagation. A subsequent comparison between predictions from the extended models and experimental strengthening data for peak age-hardened samples reveals that the(extended) single dislocation and dislocation wall models provide reasonably accurate values of the increase in CRSS.Ultimately, the results presented here help elucidate the fidelity and applicability of the various hardening models in predicting precipitation strenghtening effects in technologically important alloys.
基金This work was financially supported by the National Natural Science Foundation of China (No.50671084)China Postdoctoral Science Foundation (No.20070420218).
文摘On the basis of the microscopic phase-field dynamic model and the microelasticity theory, the characteristics of the coarsening behavior of γ' phase in Ni-Al alloys have been systematically studied in a certain volume fraction of the precipitates. It was found that the initial irregular shape, randomly distributed γ' phase, gradually transformed into cuboidal shape, regularly aligned along the [100] and [010] directions, and a highly preferential selected microstructure was formed during the later stage of precipitation. The volume fraction of the precipitates produced some effects on the precipitate morphology but did not produce an obvious effect on the regularities of precipitate distribution. The coarsening rate constant from the cubic growth law decreased as a function of volume fraction for small volume fractions, remained constant for intermediate volume fractions, and increased as a function of volume fraction for large volume fractions. During the coherent coarsening process, four "splitting" patterns between γ' phases, which belonged to different antiphase domains, were produced via particle aggregation, such as an L-shaped pattern, a doublet, a triplet, and a quartet.