In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properti...In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properties of the complexes. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods have been used. The ground state geometries, binding energies, spectral properties (UV-vis), frontier molecular orbitals (FMOs) analysis, charge analysis and natural bond orbital (NBO) have been investigated. The geometrical parameters are in good agreement with the available experimental data. The metal-ligand binding energies are 1 order of magnitude larger than the physisorption energy of a benzene-1, 2-dthiolate molecule on a metallic surface. The electronic structures of the first raw transition metal series from V to Co have been elucidated by UV-vis spectroscopic using DFT calculations. In accordance with experiment the calculated electronic spectra of these tris complexes show bands at 522, 565, 559, 546 and 863 nm for V3+, Cr3+, Mn3+, Fe3+ and Co3+ respectively which are mainly attributed to ligand to metal charge transfer (LMCT) transitions. The electronic properties analysis shows that the highest occupied molecular orbital (HOMO) is mainly centered on metal coordinated sulfur atoms whereas the lowest unoccupied molecular orbital (LUMO) is mainly located on the metal surface. From calculation of intramolecular interactions and electron delocalization by natural bond orbital (NBO) analysis, the stability of the complexes was estimated. The NBO results showed significant charge transfer from sulfur to central metal ions in the complexes, as well as to the benzene. The calculated charges on metal ions are also reported at various charge schemes. The calculations show encouraging agreement with the available experimental data.展开更多
We analyze the spectral distribution of localisation in a 1D diagonally disordered chain of fragments each of which consist of m coupled two-level systems. The calculations performed by means of developed perturbation...We analyze the spectral distribution of localisation in a 1D diagonally disordered chain of fragments each of which consist of m coupled two-level systems. The calculations performed by means of developed perturbation theory for joint statistics of advanced and retarded Green’s functions. We show that this distribution is rather inhomogeneous and reveals spectral regions of weakly localized states with sharp peaks of the localization degree in the centers of these regions.展开更多
The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which t...The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which the nuclear motions(translational,rotational and vibration motions) are not included,therefore,its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics(AMRS),the reasonable dissociation limits of D2O(1A1)are determined,its equilibrium geometry and dissociation energy are calculated by density-functional theory(DFT) B3lyp,and then,using the many-body expansion method the potential energy function of D2O(1A1) is obtained for the first time. The potential contours are drawn,in which it is found that the reactive channel D + OD→D2O has no threshold energy,so it is a free radical reaction. But the reactive channel O + DD→D2O has a saddle point. The study of collision for D2O(1A1) is under way.展开更多
文摘In this study, the first raw transition metals from V to Co complexes with benzene-1,2-dithiolate (L2-) ligand have been studied theoretically to elucidate the geometry, electronic structure and spectroscopic properties of the complexes. Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TD-DFT) methods have been used. The ground state geometries, binding energies, spectral properties (UV-vis), frontier molecular orbitals (FMOs) analysis, charge analysis and natural bond orbital (NBO) have been investigated. The geometrical parameters are in good agreement with the available experimental data. The metal-ligand binding energies are 1 order of magnitude larger than the physisorption energy of a benzene-1, 2-dthiolate molecule on a metallic surface. The electronic structures of the first raw transition metal series from V to Co have been elucidated by UV-vis spectroscopic using DFT calculations. In accordance with experiment the calculated electronic spectra of these tris complexes show bands at 522, 565, 559, 546 and 863 nm for V3+, Cr3+, Mn3+, Fe3+ and Co3+ respectively which are mainly attributed to ligand to metal charge transfer (LMCT) transitions. The electronic properties analysis shows that the highest occupied molecular orbital (HOMO) is mainly centered on metal coordinated sulfur atoms whereas the lowest unoccupied molecular orbital (LUMO) is mainly located on the metal surface. From calculation of intramolecular interactions and electron delocalization by natural bond orbital (NBO) analysis, the stability of the complexes was estimated. The NBO results showed significant charge transfer from sulfur to central metal ions in the complexes, as well as to the benzene. The calculated charges on metal ions are also reported at various charge schemes. The calculations show encouraging agreement with the available experimental data.
文摘We analyze the spectral distribution of localisation in a 1D diagonally disordered chain of fragments each of which consist of m coupled two-level systems. The calculations performed by means of developed perturbation theory for joint statistics of advanced and retarded Green’s functions. We show that this distribution is rather inhomogeneous and reveals spectral regions of weakly localized states with sharp peaks of the localization degree in the centers of these regions.
基金Supported by Education Department of Heilongjiang Province(11533046)the Academic Scientific and Technological Innovative Projects of Heilongjiang University University Students
基金Supported by the National Natural Science Foundation of China (Grant No. NSAF10676022)
文摘The present work is to construct the potential energy function of isotopic molecules. The so-called molecular potential energy function is the electronic energy function under Born-Oppenheimer approximation,in which the nuclear motions(translational,rotational and vibration motions) are not included,therefore,its nuclear vibration motion and isotopic effect need to be considered. Based on group theory and atomic and molecular reactive statics(AMRS),the reasonable dissociation limits of D2O(1A1)are determined,its equilibrium geometry and dissociation energy are calculated by density-functional theory(DFT) B3lyp,and then,using the many-body expansion method the potential energy function of D2O(1A1) is obtained for the first time. The potential contours are drawn,in which it is found that the reactive channel D + OD→D2O has no threshold energy,so it is a free radical reaction. But the reactive channel O + DD→D2O has a saddle point. The study of collision for D2O(1A1) is under way.