为了研究转基因小麦中外源品质基因1D x 5在我国主栽小麦种质中的遗传规律,以转基因小麦B 72-8-11b为父本,主栽品种川89-107和鄂麦18为母本进行杂交,采用SDS-PAGE技术检测并分析各组合亲本、F1、F2、BC1F2、BC2F1、BC2F2代的HMW-GS组成...为了研究转基因小麦中外源品质基因1D x 5在我国主栽小麦种质中的遗传规律,以转基因小麦B 72-8-11b为父本,主栽品种川89-107和鄂麦18为母本进行杂交,采用SDS-PAGE技术检测并分析各组合亲本、F1、F2、BC1F2、BC2F1、BC2F2代的HMW-GS组成。结果表明,外源基因有效地整合到主栽小麦的基因组中,并能够遵循孟德尔遗传模式稳定地遗传给下一代。展开更多
Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occ...Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occurs, cytosolic sesquiterpenes are assumed to derive mainly from MVA, while plastidial monoterpenes are produced preferentially from MEP precursors. Additional complexity arises in the first step of the MEP pathway, which is typically catalyzed by two divergent 1-deoxy-D-xylulose 5-phosphate synthase isoforms (DXS1, DXS2). In tomato (Solanum lycopersicum), the SIDXS1 gene is ubiquitously expressed with highest levels during fruit ripening, whereas SIDXS2 transcripts are abundant in only few tissues, including young leaves, petals, and isolated trichomes. Specific down-regulation of SIDXS2 expression was performed by RNA interference in transgenic plants to investigate feedback mechanisms. SIDXS2 down-regulation led to a decrease in the monoterpene β-phellandrene and an increase in two sesquiterpenes in trichomes. Moreover, incorporation of MVA-derived precursors into residual monoterpenes and into sesquiterpenes was elevated as determined by comparison of ^13C to ^12C natural isotope ratios. A compensatory up-regulation of SIDXS1 was not observed. Down-regulated lines also exhibited increased trichome density and showed less damage by leaf-feeding Spodoptera littoralis caterpillars. The results reveal novel, non-redundant roles of DXS2 in modulating isoprenoid metabolism and a pronounced plasticity in isoprenoid precursor allocation.展开更多
文摘为了研究转基因小麦中外源品质基因1D x 5在我国主栽小麦种质中的遗传规律,以转基因小麦B 72-8-11b为父本,主栽品种川89-107和鄂麦18为母本进行杂交,采用SDS-PAGE技术检测并分析各组合亲本、F1、F2、BC1F2、BC2F1、BC2F2代的HMW-GS组成。结果表明,外源基因有效地整合到主栽小麦的基因组中,并能够遵循孟德尔遗传模式稳定地遗传给下一代。
文摘Plant isoprenoids are formed from precursors synthesized by the mevalonate (MVA) pathway in the cytosol or by the methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. Although some exchange of precursors occurs, cytosolic sesquiterpenes are assumed to derive mainly from MVA, while plastidial monoterpenes are produced preferentially from MEP precursors. Additional complexity arises in the first step of the MEP pathway, which is typically catalyzed by two divergent 1-deoxy-D-xylulose 5-phosphate synthase isoforms (DXS1, DXS2). In tomato (Solanum lycopersicum), the SIDXS1 gene is ubiquitously expressed with highest levels during fruit ripening, whereas SIDXS2 transcripts are abundant in only few tissues, including young leaves, petals, and isolated trichomes. Specific down-regulation of SIDXS2 expression was performed by RNA interference in transgenic plants to investigate feedback mechanisms. SIDXS2 down-regulation led to a decrease in the monoterpene β-phellandrene and an increase in two sesquiterpenes in trichomes. Moreover, incorporation of MVA-derived precursors into residual monoterpenes and into sesquiterpenes was elevated as determined by comparison of ^13C to ^12C natural isotope ratios. A compensatory up-regulation of SIDXS1 was not observed. Down-regulated lines also exhibited increased trichome density and showed less damage by leaf-feeding Spodoptera littoralis caterpillars. The results reveal novel, non-redundant roles of DXS2 in modulating isoprenoid metabolism and a pronounced plasticity in isoprenoid precursor allocation.