期刊导航
期刊开放获取
重庆大学
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于KNN算法的改进的一对多SVM多分类器
被引量:
10
1
作者
刘雨康
张正阳
+1 位作者
陈琳琳
陈静
《计算机工程与应用》
CSCD
北大核心
2015年第24期126-131,共6页
针对传统支持向量机(SVM)多分类一对多算法存在的运算量大、耗时长、数据偏斜以及对最优超平面附近点分类易出错问题,提出了一种改进方法。将数据空间分为密集区和稀疏区,各类中密集点归于密集区,其余归于稀疏区。将每类中密集点连同它...
针对传统支持向量机(SVM)多分类一对多算法存在的运算量大、耗时长、数据偏斜以及对最优超平面附近点分类易出错问题,提出了一种改进方法。将数据空间分为密集区和稀疏区,各类中密集点归于密集区,其余归于稀疏区。将每类中密集点连同它附近的点用于训练得到相应的SVM分类器。在测试阶段,对密集区的待测样本用传统的一对多判别准则来做类别预测;对稀疏区的待测样本则采用K近邻(KNN)算法。数值实验结果表明,改进的算法在耗时和分类精度上都优于原算法,对解决一对多算法存在的问题有较好的成效。
展开更多
关键词
支持向量机(SVM)
一对多
K近邻(KNN)
数据偏斜
下载PDF
职称材料
题名
基于KNN算法的改进的一对多SVM多分类器
被引量:
10
1
作者
刘雨康
张正阳
陈琳琳
陈静
机构
中国农业大学理学院
出处
《计算机工程与应用》
CSCD
北大核心
2015年第24期126-131,共6页
基金
国家自然科学基金(No.11271367)
文摘
针对传统支持向量机(SVM)多分类一对多算法存在的运算量大、耗时长、数据偏斜以及对最优超平面附近点分类易出错问题,提出了一种改进方法。将数据空间分为密集区和稀疏区,各类中密集点归于密集区,其余归于稀疏区。将每类中密集点连同它附近的点用于训练得到相应的SVM分类器。在测试阶段,对密集区的待测样本用传统的一对多判别准则来做类别预测;对稀疏区的待测样本则采用K近邻(KNN)算法。数值实验结果表明,改进的算法在耗时和分类精度上都优于原算法,对解决一对多算法存在的问题有较好的成效。
关键词
支持向量机(SVM)
一对多
K近邻(KNN)
数据偏斜
Keywords
Support Vector Machine(SVM)
1-vs-all
K Nearest Neighbour(KNN)
data skew
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于KNN算法的改进的一对多SVM多分类器
刘雨康
张正阳
陈琳琳
陈静
《计算机工程与应用》
CSCD
北大核心
2015
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部