C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the...C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/poro...Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller.展开更多
The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In...The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.展开更多
目的观察C/C-SiC复合材料对周围骨组织细胞凋亡情况的影响。方法选用8只日本大耳白兔,雄性,随机分为2组(每组4只)。将实验材料(C/C-SiC复合材料)和对照材料(Ti)各8枚植入兔子股骨内。3个月后,将带有实验材料和对照材料股骨标本脱钙、进...目的观察C/C-SiC复合材料对周围骨组织细胞凋亡情况的影响。方法选用8只日本大耳白兔,雄性,随机分为2组(每组4只)。将实验材料(C/C-SiC复合材料)和对照材料(Ti)各8枚植入兔子股骨内。3个月后,将带有实验材料和对照材料股骨标本脱钙、进行免疫组化(Caspase-3、Bax、Bcl-2)染色。观察植入材料周围骨组织细胞生长和凋亡的表达情况,并利用Imagepro Plus 6.0图像分析软件分析棕染细胞的灰度值。然后利用SPSS 17.0统计软件进行独立样本t检验分析结果。结果实验动物麻醉及手术效果较理想。植入材料与骨结合紧密、无松动,大部分植入材料表面有新生骨组织。光镜下观察,Caspase-3、Bcl-2、Bax免疫组化呈阳性反应骨细胞胞质及部分细胞膜棕褐色染色。C/C-SiC实验组棕褐色染色平均灰度值与纯钛对照组棕褐色染色平均灰度值相比无显著差别。结论 C/C-SiC复合材料植入兔股骨内术后3个月,材料周围骨细胞凋亡程度与纯钛材料无显著差别。展开更多
基金Projects(51272213,51221001)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)Project(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
基金Funded by the National Basic Research Program of China,National Natural Science Foundation of China(No.51075204)Funding of Jiangsu Innovation Program for Graduate Education(No.CXLX13_165)+2 种基金the Fundamental Research Funds for the Central Universities,Aeronautical Science Foundation of China(No.2012ZB52026)Research Fund for the Doctoral Program of Higher Education of China(No.20070287039)NUAA Research Funding(No.NZ2012106)
文摘Double-scale model for three-dimension-4 directional(3D-4d) braided C/SiC composites has been proposed to investigate its elastic properties. The double-scale model involves micro-scale that takes fiber/ matrix/porosity in fibers tows into consideration with unit cell which considers the 3D-4d braiding structure. Micro-optical photographs of composites have been taken to study the braided structure. Then a parameterized finite element model that reflects the structure of 3D-4d braided composites is proposed. Double-scale elastic modulus prediction model is developed to predict the elastic properties of 3D-4d braided C/SiC composites. Stiffness and eompliance-averaging method and energy method are adopted to predict the elastic properties of composites. Static-tension experiments have been conducted to investigate the elastic modulus of 3D-4d braided C/SiC composites. Finally, the effect of micro-porosity in fibers tows on the elastic modulus of 3D-4d braided C/SiC composites has been studied. According to the conclusion of this thesis, elastic modulus predicted by energy method and stiffness-averaging method both find good agreement with the experimental values, when taking the micro-porosity in fibers tows into consideration. Differences between the theoretical and experimental values become smaller.
基金Funded by the National Basic Research Program of Chinathe National Natural Science Foundation of China(51675266)+3 种基金the Aeronautical Science Foundation of China(2014ZB52024)the Fundamental Research Funds for the Central Universities(NJ20160038)the Jiangsu Innovation Program for Graduate Education(CXLX13_165)the Fundamental Research Funds for the Central Universities
文摘The longitude tensile properties of 3-Dimension-4-directional(3D-4d) braided C/Si C composites(CMCs) were investigated with the help of a double scale model. This model involves micro-scale and unit-cell scale. In micro-scale, the tensile properties of fiber tows which involves matrix cracking, interfacial debonding, and fiber failure are studied. The unit-cell scale model can reflect the braided structure and simulate the tensile properties of 3D-4d CMCs by introducing the tensile properties of fiber tows into it. Quasi-static tensile tests of 3D-4d braided CMCs were performed on a PWS-100 test system. The predicted tensile stressstrain curve by the double scale model is in good agreement with that of the experimental results.
基金supported by the Funding of National Key Laboratory,the Pre-Research Funding,China(No.6142907200301)the Key Laboratory of Lightweight High Strength Structural Materials and State Key Laboratory of Powder Metallurgy in Central South University for financial support。
基金the financial supports from the National Natural Science Foundation of China(No.51902239)the Natural Science Foundation of Shaanxi Province,China(No.2020JQ-808)the National Innovation and Entrepreneurship Training Program for College Students,China(No.202110702040)。
文摘目的观察C/C-SiC复合材料对周围骨组织细胞凋亡情况的影响。方法选用8只日本大耳白兔,雄性,随机分为2组(每组4只)。将实验材料(C/C-SiC复合材料)和对照材料(Ti)各8枚植入兔子股骨内。3个月后,将带有实验材料和对照材料股骨标本脱钙、进行免疫组化(Caspase-3、Bax、Bcl-2)染色。观察植入材料周围骨组织细胞生长和凋亡的表达情况,并利用Imagepro Plus 6.0图像分析软件分析棕染细胞的灰度值。然后利用SPSS 17.0统计软件进行独立样本t检验分析结果。结果实验动物麻醉及手术效果较理想。植入材料与骨结合紧密、无松动,大部分植入材料表面有新生骨组织。光镜下观察,Caspase-3、Bcl-2、Bax免疫组化呈阳性反应骨细胞胞质及部分细胞膜棕褐色染色。C/C-SiC实验组棕褐色染色平均灰度值与纯钛对照组棕褐色染色平均灰度值相比无显著差别。结论 C/C-SiC复合材料植入兔股骨内术后3个月,材料周围骨细胞凋亡程度与纯钛材料无显著差别。