Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch...Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.展开更多
The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
Rational design of bifunctional electrocatalysts for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)with excellent activity and stability is of great significance,since overall water splitting is a ...Rational design of bifunctional electrocatalysts for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)with excellent activity and stability is of great significance,since overall water splitting is a promising technology for sustainable conversion of clean energy.However,most electrocatalysts do not simultaneously possess optimal HER/OER activities and their electrical conductivities are intrinsically low,which limit the development of overall water splitting.In this paper,a strategy of electric field treatment is proposed and applied to Ni/Co_(3)O_(4) film to develop a novel bifunctional electrocatalyst.After treated by electric field,the conductive channels consisting of oxygen vacancies are formed in the Co_(3)O_(4) film,which remarkably reduces the resistance of the system by almost 2×10^(4) times.Meanwhile,the surface Ni metal electrode is partially oxidized to nickel oxide,which enhances the catalytic activity.The electric-field-treated Ni/Co_(3)O_(4) material exhibits super outstanding performance of HER,OER,and overall water splitting,and the catalytic activity is significantly superior to the state-of-the-art noble metal catalysts(Pt/C,RuO_(2),and RuO_(2)‖Pt/C couple).This work provides an effective and feasible method for the development of novel and efficient bifunctional electrocatalyst,which is also promising for wide use in the field of catalysis.展开更多
The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surf...The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surface-borehole observation device for leakage electric fi eld detection to achieve rapid measurement of the electric fi eld distribution characteristics at ground level in the foundation pit,thus enabling rapid localization of leakage points.We first establish the mechanism and basic equation of the leakage electric field response by combining the electric field formed by electrokinetic effect(EK)and the stable electric fi eld formed by conduction current in a combined leakage channel.Then,the fi nite–infi nite element coupling method is used to solve the electric fi eld equation to simulate the responses of a three-dimensional foundation pit leakage model.Furthermore,we conduct numerical simulations of diff erent pit models to investigate the infl uencing factors of the detection device and response characteristics of the change in the properties of the leakage channel.The results demonstrate that the proposed joint surface-borehole observation device can effi ciently reveal anomalous potential caused by leakage,and the amplitude of the electric fi eld generated by EK can eff ectively strengthen the leakage electric fi eld signal at the leakage,thus improving detection accuracy and effi ciency.展开更多
We calculated the uniform dielectric breakdown field strength of residual 30% CF3I/CO2 gas mixtures during the arc extinction process over the temperature range 300-3500 K at 0.1 MPa. The limiting reduced field streng...We calculated the uniform dielectric breakdown field strength of residual 30% CF3I/CO2 gas mixtures during the arc extinction process over the temperature range 300-3500 K at 0.1 MPa. The limiting reduced field strengths are decided by a balance of electron generation and loss based on chemical reactions estimated by the electron energy distribution function (EEDF), which employs the Boltzmann equation method with two-term expanding approximation in the steady-state Townsend (SST) condition. During the insulation recovery phase, the hot CF3I/CO2 gas mixtures have maximum dielectric strength at a temperature of about 1500 K. At room temperature 300 K, the electric strength after arc extinction (90.3 Td, 1 Td=10-21 V.m2) is only 38% of the original value before arc (234.9 Td). The adverse insulation recovery ability of CF3I/CO2 gas mixtures in arc extinction hinders its application in electric circuit breakers and other switchgears as an arc quenching and insulating medium.展开更多
Infrared spectrum and NMR chemical shifts of Si (CH3)2O double free radical were calculatedemploying density functional theory(DFT) with the basis sets 6 - 311 + G(2d, p). Excited states, dipole momentand energy of Si...Infrared spectrum and NMR chemical shifts of Si (CH3)2O double free radical were calculatedemploying density functional theory(DFT) with the basis sets 6 - 311 + G(2d, p). Excited states, dipole momentand energy of Si(CH3 )2O double free radical were also calculated using time dependent density function theory(TD-DFT) with the same basis sets. It is found that the external electric field along the X,Y and Z axis affectdifferently on the excited states and other properties of Si(CH3)2O double free radical.展开更多
We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that bot...We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that both nanoplates possess high conductivity and show metallic-like behavior. Compared to the smooth nanoplate, the spiral-type one exhibits the higher carrier concentration and lower mobility. CAFM characterization reveals that the conductance at the screw-dislocation edge is even higher than that on the terrace, implying that the dislocation can supply excess carriers to compensate the low mobility and achieve high conductivity. The unique structure and electrical properties make the spiral-type Bi2 Se3 nanoplates a good candidate for catalysts and gas sensors.展开更多
By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:C...By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances. Experimental verifications are given with a small electric field applied externally.展开更多
Lead-free tin perovskite solar cells(PSCs)have undergone rapid development in recent years and are regarded as a promising ecofriendly photovoltaic technology.However,a strategy to suppress charge recombination via a ...Lead-free tin perovskite solar cells(PSCs)have undergone rapid development in recent years and are regarded as a promising ecofriendly photovoltaic technology.However,a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking.In the present study,a formamidinium tin iodide(FASnI;)perovskite absorber with a vertical Sn;gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites.Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn;content from the bottom to the top in this heterogeneous FASnI;film,which generates an additional electric field to prevent the trapping of photo-induced electrons and holes.Consequently,the Sn;-gradient FASnI;absorber exhibits a promising efficiency of 13.82%for inverted tin PSCs with an open-circuit voltage increase of 130 mV,and the optimized cell maintains over 13%efficiency after continuous operation under 1-sun illumination for 1,000 h.展开更多
Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and princi...Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and principle of the two-gateways parallel 3-D electrical technology and the arrangement of the observation system. The authors use this method to detect the water under the floor of a mine in north of Anhui. The results show that the two-gateways parallel 3-D electrical technology can accurately locate the water-rich areas, providing the basis for drilling drainage and grouting construction.展开更多
The dehalogenation of organohalides has been a research hotspot in bioremediation field;however,the influence of tourmaline,a natural ore that can generate spontaneous electric field,on organohalide-respiring bacteria...The dehalogenation of organohalides has been a research hotspot in bioremediation field;however,the influence of tourmaline,a natural ore that can generate spontaneous electric field,on organohalide-respiring bacteria(OHRB)and their dechlorination process is not well known.In this study,the effect and mechanism of tourmaline on the reductive dechlorination of 2,3-dichlorophenol(2,3-DCP)by Desulfitobacterium hafniense DCB-2Twere explored.The characterization results confirmed that tourmaline had good stability and the optimal dosage of tourmaline was 2.5 g/L,which shortened the total time required for dechlorination reaction to 72 hr.Besides,tourmaline amendment also increased the proportion of 2-chlorophenol(2-CP)from 18%to 30%of end products,while that of 3-CP decreased correspondingly.The theoretical calculations showed that the bond charge of the orthosubstituted chlorine declined from-0.179 to-0.067,and that of meta-substituted chlorine increased from-0.111 to-0.129,which indicated that the spontaneous electric field of tourmaline affected the charge distribution of 2,3-DCP and was more conducive to the generation of 2-CP.Overall,tourmaline with the spontaneous electric field affected the reductive dechlorination pathway of Desulfitobacterium,and the tourmaline-OHRB combining system might serve as a novel strategy for the bioremediation of environments polluted with chlorinated phenols.展开更多
In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of ...In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of volume visualization is explored, based on the characteristics of explosion and shock. Based on this, a visualization system for 3-D explosion--ViSC3D is designed. Approaches for the visualization of 3-D field of explosion are presented. The algorithm and the functions of ViSC3D are also presented. ViSC3D is thus a useful tool to observe and analyze either the full picture or the details of a 3-D field of explosion, that are difficult to observe and analyze directly. With ViSC3D, the field of explosion between the hill slopes is visualized. The cutaway views and 2-D slices are also given. The full picture and partial details of 3-D field of explosion can be observed clearly. Furthermore, ViSC3D can be used to visualize other similar 3-D data fields.展开更多
It is a challenging issue to further drive charge separation through the oriented design of Z-scheme het-erojunction in the exploitation of cost-effective photocatalytic materials.In this contribution,the unique Z-sch...It is a challenging issue to further drive charge separation through the oriented design of Z-scheme het-erojunction in the exploitation of cost-effective photocatalytic materials.In this contribution,the unique Z-scheme 3D/2D In_(2)Se_(3)/PCN heterojunction is developed through implanting In_(2)Se_(3) microspheres on PCN nanosheets using an in situ growth technique,which acquires the effective CO generation activity from photocatalytic CO_(2) reduction(CO_(2)R).The CO yield of 4 h in the CO_(2)R reaction over the optimal In_(2)Se_(3)/PCN-15 sample reaches up to 11.40 and 2.41 times higher than that of individual PCN and In_(2)Se_(3),respectively.Such greatly enhanced photocatalytic performance is primarily the improvement of photo-generated carrier separation efficiency.To be more specific,the formed built-in electric field is signifi-cantly intensified by producing the temperature difference potential between In_(2)Se_(3) and PCN owing to the photothermoelectric effect of In_(2)Se_(3),which actuates the high-efficiency separation of photogenerated charge carriers along the Z-scheme transfer path in the In_(2)Se_(3)/PCN heterojunction.The effective strat-egy of enhancing the built-in electric field to drive photogenerated charge separation proposed in this work opens up an innovative avenue to design Z-scheme heterojunction applied to high-efficiency pho-tocatalytic reactions,such as hydrogen generation from water splitting,CO_(2)R,and degradation of organic pollutants.展开更多
Transition metal dichalcogenides are interesting candidates as photocatalysts for hydrogen evolution reaction.The MnPSe_(3)/WS_(2) heterostructure is hence studied here with first principles calculations by exploring ...Transition metal dichalcogenides are interesting candidates as photocatalysts for hydrogen evolution reaction.The MnPSe_(3)/WS_(2) heterostructure is hence studied here with first principles calculations by exploring its electronic properties under the application of an electric field.It is discovered that the band gap will decrease from the WS_(2) monolayer to the MnPSe_(3)/WS_(2) heterostructure with Perdew-Burke-Ernzerhof functional,while increase slightly when electron correlation is involved.The conduction band minimum of the heterostructure is determined by the MnPSe3 layer,while the valence band maximum is contributed by the WS_(2)layer.The band edges and band gap suggest that the heterostructure will have good photocatalytic properties for water splitting.Moreover,comparing to monolayer WS_(2),the light absorption in both the ultraviolet and visible regions will be enhanced.When an electric field is present,a linear relation is observed between the electric field and the band gap within specific range,which can thus modulate the photocatalytic performance of this heterostructure.展开更多
The La-dopping effect on the piezoelectricity in the K0.5Na0.5NbO3 (KNN) crystal with a tetragonal phase is investigated for the first time using the first-principle calculation based on density functional theory. T...The La-dopping effect on the piezoelectricity in the K0.5Na0.5NbO3 (KNN) crystal with a tetragonal phase is investigated for the first time using the first-principle calculation based on density functional theory. The full potentiallinearized augumented plane wave plus local orbitals (APW-LO) method and the supercell method are used in the calculation for the KNN crystal with and without the La doping. The results show that the piezoelectricity originates from the strong hybridization between the Nb atom and the O atom, and the substitution of the K or Na atom by the La impurity atom introduces the anisotropic relaxation and enhances the piezoelectricity at first and then restrains the hybridization of the Nb-O atoms when the La doping content further increases.展开更多
The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods f...The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods for fractures are based on the theory of effective anisotropy medium.The aim of this work is to improve the structural images with dense sampling of 3-D survey to evaluate structural and stratigraphic models for reservoir development to predict reservoir quality.The present study of the Gullfaks Field,located in the Norwegian North Sea Gullfaks sector,identifies the shallowest structural elements.The steepness of westward structural dip decreases eastward during the Upper Jurassic to Lower Cretaceous deposition.Reservoir sands consist of the Middle Jurassic deltaic deposits and Lower Jurassic fluvial channel and delta plain deposits.Sediment supply steadily prevails on sea-level rise and the succession displays a regressive trend indicated by a good continuous stacking pattern.The key factor for the development of reservoirs in the Gullfaks Field is fault transmissibility with spatially distributed pressure.The majority of mapped faults with sand-to-sand contacts are non-sealing,which provide restriction for the HC flow between the fault blocks.The traps for HC accumulation occur between the post-rift and syn-rift strata,i.e.antiform set by extensional system,unconformity trap at the top of syndeposition,and structural trap due to normal faults.Overall reservoir quality in the studied area is generally excellent with average 35%porosity and permeability in the Darcy range.Our findings are useful to better understand the development of siliciclastic reservoirs in similar geological settings worldwide.展开更多
基金supported by the faculty startup funds from the Yangzhou Universitythe Natural Science Foundation of Jiangsu Province(BK20210821)+1 种基金the National Natural Science Foundation of China(22102141)the Lvyangjinfeng Talent Program of Yangzhou。
文摘Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained.
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
基金supported by the program B for Outstanding PhD candidate of Nanjing University.
文摘Rational design of bifunctional electrocatalysts for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER)with excellent activity and stability is of great significance,since overall water splitting is a promising technology for sustainable conversion of clean energy.However,most electrocatalysts do not simultaneously possess optimal HER/OER activities and their electrical conductivities are intrinsically low,which limit the development of overall water splitting.In this paper,a strategy of electric field treatment is proposed and applied to Ni/Co_(3)O_(4) film to develop a novel bifunctional electrocatalyst.After treated by electric field,the conductive channels consisting of oxygen vacancies are formed in the Co_(3)O_(4) film,which remarkably reduces the resistance of the system by almost 2×10^(4) times.Meanwhile,the surface Ni metal electrode is partially oxidized to nickel oxide,which enhances the catalytic activity.The electric-field-treated Ni/Co_(3)O_(4) material exhibits super outstanding performance of HER,OER,and overall water splitting,and the catalytic activity is significantly superior to the state-of-the-art noble metal catalysts(Pt/C,RuO_(2),and RuO_(2)‖Pt/C couple).This work provides an effective and feasible method for the development of novel and efficient bifunctional electrocatalyst,which is also promising for wide use in the field of catalysis.
基金partially supported by the National Natural Science Foundation of China (Nos. 41864004 and 41674077)Jiangxi Provincial Academic Leaders (Youth) Training Program (No. 20204BCJL23058)Open Fund from Engineering Research Center for Seismic Disaster Prevention and Engineering Geological Disaster Detection of Jiangxi Province (SDGD202102)。
文摘The traditional ground direct current method is not suitable for leakage detection of underground diaphragm walls in foundation pits because of its low accuracy and poor anti-noise ability.Here,we propose a joint surface-borehole observation device for leakage electric fi eld detection to achieve rapid measurement of the electric fi eld distribution characteristics at ground level in the foundation pit,thus enabling rapid localization of leakage points.We first establish the mechanism and basic equation of the leakage electric field response by combining the electric field formed by electrokinetic effect(EK)and the stable electric fi eld formed by conduction current in a combined leakage channel.Then,the fi nite–infi nite element coupling method is used to solve the electric fi eld equation to simulate the responses of a three-dimensional foundation pit leakage model.Furthermore,we conduct numerical simulations of diff erent pit models to investigate the infl uencing factors of the detection device and response characteristics of the change in the properties of the leakage channel.The results demonstrate that the proposed joint surface-borehole observation device can effi ciently reveal anomalous potential caused by leakage,and the amplitude of the electric fi eld generated by EK can eff ectively strengthen the leakage electric fi eld signal at the leakage,thus improving detection accuracy and effi ciency.
基金supported by National Natural Science Foundation of China(No.10875093)
文摘We calculated the uniform dielectric breakdown field strength of residual 30% CF3I/CO2 gas mixtures during the arc extinction process over the temperature range 300-3500 K at 0.1 MPa. The limiting reduced field strengths are decided by a balance of electron generation and loss based on chemical reactions estimated by the electron energy distribution function (EEDF), which employs the Boltzmann equation method with two-term expanding approximation in the steady-state Townsend (SST) condition. During the insulation recovery phase, the hot CF3I/CO2 gas mixtures have maximum dielectric strength at a temperature of about 1500 K. At room temperature 300 K, the electric strength after arc extinction (90.3 Td, 1 Td=10-21 V.m2) is only 38% of the original value before arc (234.9 Td). The adverse insulation recovery ability of CF3I/CO2 gas mixtures in arc extinction hinders its application in electric circuit breakers and other switchgears as an arc quenching and insulating medium.
文摘Infrared spectrum and NMR chemical shifts of Si (CH3)2O double free radical were calculatedemploying density functional theory(DFT) with the basis sets 6 - 311 + G(2d, p). Excited states, dipole momentand energy of Si(CH3 )2O double free radical were also calculated using time dependent density function theory(TD-DFT) with the same basis sets. It is found that the external electric field along the X,Y and Z axis affectdifferently on the excited states and other properties of Si(CH3)2O double free radical.
文摘We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that both nanoplates possess high conductivity and show metallic-like behavior. Compared to the smooth nanoplate, the spiral-type one exhibits the higher carrier concentration and lower mobility. CAFM characterization reveals that the conductance at the screw-dislocation edge is even higher than that on the terrace, implying that the dislocation can supply excess carriers to compensate the low mobility and achieve high conductivity. The unique structure and electrical properties make the spiral-type Bi2 Se3 nanoplates a good candidate for catalysts and gas sensors.
基金Project supported by the State Science and Technology Commission of China (Grant No 2002CCA03500) and the National Natural Science Foundation of China (Grant No 60177016).
文摘By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances. Experimental verifications are given with a small electric field applied externally.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11834011 and 12074245)The work performed at the University of Tokyo was supported by JSPS KAKENHI Grant Number 21H02040 and the New Energy and Industrial Technology Development Organization(NEDO)+1 种基金T.W.,G.T.,L.K.O.,and Y.B.Q.acknowledge the support from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University.We thank Mrs Miwako Furue and Dr.Haibin Wang at the University of Tokyo for the GIXRD and EDS measurementsOpen access funding provided by Shanghai Jiao Tong University
文摘Lead-free tin perovskite solar cells(PSCs)have undergone rapid development in recent years and are regarded as a promising ecofriendly photovoltaic technology.However,a strategy to suppress charge recombination via a built-in electric field inside a tin perovskite crystal is still lacking.In the present study,a formamidinium tin iodide(FASnI;)perovskite absorber with a vertical Sn;gradient was fabricated using a Lewis base-assisted recrystallization method to enhance the built-in electric field and minimize the bulk recombination loss inside the tin perovskites.Depth-dependent X-ray photoelectron spectroscopy revealed that the Fermi level upshifts with an increase in Sn;content from the bottom to the top in this heterogeneous FASnI;film,which generates an additional electric field to prevent the trapping of photo-induced electrons and holes.Consequently,the Sn;-gradient FASnI;absorber exhibits a promising efficiency of 13.82%for inverted tin PSCs with an open-circuit voltage increase of 130 mV,and the optimized cell maintains over 13%efficiency after continuous operation under 1-sun illumination for 1,000 h.
文摘Coal working face is damaged more and more seriously by water below the coal face floor. Therefore, floor water detection is a must in the process of extraction. This article aims to introducing application and principle of the two-gateways parallel 3-D electrical technology and the arrangement of the observation system. The authors use this method to detect the water under the floor of a mine in north of Anhui. The results show that the two-gateways parallel 3-D electrical technology can accurately locate the water-rich areas, providing the basis for drilling drainage and grouting construction.
基金supported by the Natural Science Foundation of Hunan Province of China (No.2020JJ4194)the Shenzhen Science and Technology Program (No.JCYJ20220530160412027)+4 种基金the Changsha Science and Technology Program (No.kq2004022)the Science and Technology Innovation Program of Hunan Province (No.2022RC1026)the Project of the National Key Research and Development Program of China (No.2021YFC1910400)the Technical Innovation Leading Plan Project for Hunan High-tech Industry (Nos.2020SK2042 and2022GK4062)the Key R&D Project of Hunan Province of China (No.2022SK2067)。
文摘The dehalogenation of organohalides has been a research hotspot in bioremediation field;however,the influence of tourmaline,a natural ore that can generate spontaneous electric field,on organohalide-respiring bacteria(OHRB)and their dechlorination process is not well known.In this study,the effect and mechanism of tourmaline on the reductive dechlorination of 2,3-dichlorophenol(2,3-DCP)by Desulfitobacterium hafniense DCB-2Twere explored.The characterization results confirmed that tourmaline had good stability and the optimal dosage of tourmaline was 2.5 g/L,which shortened the total time required for dechlorination reaction to 72 hr.Besides,tourmaline amendment also increased the proportion of 2-chlorophenol(2-CP)from 18%to 30%of end products,while that of 3-CP decreased correspondingly.The theoretical calculations showed that the bond charge of the orthosubstituted chlorine declined from-0.179 to-0.067,and that of meta-substituted chlorine increased from-0.111 to-0.129,which indicated that the spontaneous electric field of tourmaline affected the charge distribution of 2,3-DCP and was more conducive to the generation of 2-CP.Overall,tourmaline with the spontaneous electric field affected the reductive dechlorination pathway of Desulfitobacterium,and the tourmaline-OHRB combining system might serve as a novel strategy for the bioremediation of environments polluted with chlorinated phenols.
文摘In order to visualize the 3-D field of explosion and describe the complex physical phenomena of explosion, the 3-D data resulting from numerical simulation by 3-D multi-material in cell (MMIC), and the application of volume visualization is explored, based on the characteristics of explosion and shock. Based on this, a visualization system for 3-D explosion--ViSC3D is designed. Approaches for the visualization of 3-D field of explosion are presented. The algorithm and the functions of ViSC3D are also presented. ViSC3D is thus a useful tool to observe and analyze either the full picture or the details of a 3-D field of explosion, that are difficult to observe and analyze directly. With ViSC3D, the field of explosion between the hill slopes is visualized. The cutaway views and 2-D slices are also given. The full picture and partial details of 3-D field of explosion can be observed clearly. Furthermore, ViSC3D can be used to visualize other similar 3-D data fields.
基金National Natural Science Foundation of China(Nos.52072153 and 62004143)Key R&D Program of Hubei Province(No.2022BAA084)+2 种基金Postdoctoral Science Foundation of China(No.2021M690023)Graduate Research Innovation Program of Jiangsu Provincial(Nos.KYCX22_3694 and KYCX23_3649)Zhenjiang Key R&D Programmes(No.SH2021021).
文摘It is a challenging issue to further drive charge separation through the oriented design of Z-scheme het-erojunction in the exploitation of cost-effective photocatalytic materials.In this contribution,the unique Z-scheme 3D/2D In_(2)Se_(3)/PCN heterojunction is developed through implanting In_(2)Se_(3) microspheres on PCN nanosheets using an in situ growth technique,which acquires the effective CO generation activity from photocatalytic CO_(2) reduction(CO_(2)R).The CO yield of 4 h in the CO_(2)R reaction over the optimal In_(2)Se_(3)/PCN-15 sample reaches up to 11.40 and 2.41 times higher than that of individual PCN and In_(2)Se_(3),respectively.Such greatly enhanced photocatalytic performance is primarily the improvement of photo-generated carrier separation efficiency.To be more specific,the formed built-in electric field is signifi-cantly intensified by producing the temperature difference potential between In_(2)Se_(3) and PCN owing to the photothermoelectric effect of In_(2)Se_(3),which actuates the high-efficiency separation of photogenerated charge carriers along the Z-scheme transfer path in the In_(2)Se_(3)/PCN heterojunction.The effective strat-egy of enhancing the built-in electric field to drive photogenerated charge separation proposed in this work opens up an innovative avenue to design Z-scheme heterojunction applied to high-efficiency pho-tocatalytic reactions,such as hydrogen generation from water splitting,CO_(2)R,and degradation of organic pollutants.
基金Project(2682019CX06)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2019KY23)supported by Research Start-up Fund from the Southwest Jiaotong University,China+2 种基金Projects(20ZDYF0236,20ZDYF0490)supported by the Key R&D Projects in the Field of High and new Technology of Sichuan,ChinaProject(52072311)supported by the National Natural Science Foundation of ChinaProject(2019JDJQ0009)supported by the Outstanding Young Scientific and Technical Talents in Sichuan Province,China。
文摘Transition metal dichalcogenides are interesting candidates as photocatalysts for hydrogen evolution reaction.The MnPSe_(3)/WS_(2) heterostructure is hence studied here with first principles calculations by exploring its electronic properties under the application of an electric field.It is discovered that the band gap will decrease from the WS_(2) monolayer to the MnPSe_(3)/WS_(2) heterostructure with Perdew-Burke-Ernzerhof functional,while increase slightly when electron correlation is involved.The conduction band minimum of the heterostructure is determined by the MnPSe3 layer,while the valence band maximum is contributed by the WS_(2)layer.The band edges and band gap suggest that the heterostructure will have good photocatalytic properties for water splitting.Moreover,comparing to monolayer WS_(2),the light absorption in both the ultraviolet and visible regions will be enhanced.When an electric field is present,a linear relation is observed between the electric field and the band gap within specific range,which can thus modulate the photocatalytic performance of this heterostructure.
基金supported by National Nature Science Foundation of China (No.11075110)
文摘The La-dopping effect on the piezoelectricity in the K0.5Na0.5NbO3 (KNN) crystal with a tetragonal phase is investigated for the first time using the first-principle calculation based on density functional theory. The full potentiallinearized augumented plane wave plus local orbitals (APW-LO) method and the supercell method are used in the calculation for the KNN crystal with and without the La doping. The results show that the piezoelectricity originates from the strong hybridization between the Nb atom and the O atom, and the substitution of the K or Na atom by the La impurity atom introduces the anisotropic relaxation and enhances the piezoelectricity at first and then restrains the hybridization of the Nb-O atoms when the La doping content further increases.
文摘The 3-D seismic dataset is a key tool to analyze and understand the mechanism of structural and stratigraphic hydrocarbon(HC)trapping in the subsurface.Conventionally used subsurface seismic characterization methods for fractures are based on the theory of effective anisotropy medium.The aim of this work is to improve the structural images with dense sampling of 3-D survey to evaluate structural and stratigraphic models for reservoir development to predict reservoir quality.The present study of the Gullfaks Field,located in the Norwegian North Sea Gullfaks sector,identifies the shallowest structural elements.The steepness of westward structural dip decreases eastward during the Upper Jurassic to Lower Cretaceous deposition.Reservoir sands consist of the Middle Jurassic deltaic deposits and Lower Jurassic fluvial channel and delta plain deposits.Sediment supply steadily prevails on sea-level rise and the succession displays a regressive trend indicated by a good continuous stacking pattern.The key factor for the development of reservoirs in the Gullfaks Field is fault transmissibility with spatially distributed pressure.The majority of mapped faults with sand-to-sand contacts are non-sealing,which provide restriction for the HC flow between the fault blocks.The traps for HC accumulation occur between the post-rift and syn-rift strata,i.e.antiform set by extensional system,unconformity trap at the top of syndeposition,and structural trap due to normal faults.Overall reservoir quality in the studied area is generally excellent with average 35%porosity and permeability in the Darcy range.Our findings are useful to better understand the development of siliciclastic reservoirs in similar geological settings worldwide.