In this work,we aim to investigate the origin of the magnetic carriers in the lunar crust and the intensity of the ancient dynamo field.The magnetization and depth range of magnetic carriers are studied under a weak a...In this work,we aim to investigate the origin of the magnetic carriers in the lunar crust and the intensity of the ancient dynamo field.The magnetization and depth range of magnetic carriers are studied under a weak and a strong magnetic anomaly in Mare Tranquillitatis and in Oceanus Procellarum,respectively,where the surface ages are 3.6 and 3.3 billion years.A sophisticated three-dimensional amplitude inversion software program from a geophysical survey is used to reconstruct the distributions of magnetization in the lunar crust.Because no globally measured surface magnetic field exists for the Moon,a crustal magnetic anomaly model with a grid resolution of 0.2°is used.The depth range of the magnetic source is fixed by the boundary identified by a relative criterion,which is 20%of the recovered maximum magnetization.The central burial depths of the magnetic carriers are approximately 15 km and 25 km under Reiner Gamma and Mare Tranquillitatis,respectively.The volumes of the two magnetic sources are at scales of 104 and 105 km3,respectively.The aforementioned differences may imply a hotter crust under Reiner Gamma than Mare Tranquillitatis by 3.3 billion years.The results support the view that the magma intrusions magnetized by an ancient magnetic field could be the origin of magnetic anomalies under Reiner Gamma and Mare Tranquillitatis.Compared with previous works,the maximum magnetization of 3 A/m under Reiner Gamma supports the intensity of the field being several microteslas.展开更多
Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to...Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.展开更多
Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and econo...Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and economy of design structures implies that generating more precise predictive models can be of vital interest.In the present study,the challenge of applying an optimally predictive threedimensional(3D) spatial DTB model for an area in Stockholm,Sweden was addressed using an automated intelligent computing design procedure.The process was developed and programmed in both C++and Python to track their performance in specified tasks and also to cover a wide variety of diffe rent internal characteristics and libraries.In comparison to the ordinary Kriging(OK) geostatistical tool,the superiority of the developed automated intelligence system was demonstrated through the analysis of confusion matrices and the ranked accuracies of different statistical errors.The re sults showed that in the absence of measured data,the intelligence models as a flexible and efficient alternative approach can account for associated uncertainties,thus creating more accurate spatial 3D models and providing an appropriate prediction at any point in the subsurface of the study area.展开更多
2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor re...2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor required for conversion. In this paper, we introduce a distributed 2D-to-3D video conversion system that includes a 2D-to-3D video conversion module, architecture of the parallel computation on the cloud, and 3D video coding in the system. The system enables cooperation among multiple users in the simultaneous completion of their conversion tasks so that the conversion efficiency is greatly promoted. In the experiments, we evaluate the system based on criteria related to both time consumption and video coding performance.展开更多
Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive to...Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results.展开更多
Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic ...Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.展开更多
Measurement of light distribution in biological tissue contributes to selecting strategy and optimizing dose for biomedical application. In this letter, a photoacoustic method combined with Monte Carlo simulation was ...Measurement of light distribution in biological tissue contributes to selecting strategy and optimizing dose for biomedical application. In this letter, a photoacoustic method combined with Monte Carlo simulation was used to estimate the three-dimensional light distribution in biological tissue. The light distribution was produced by a cylindrical diffuser which interposed into tissues. The light profiles obtained by the method were compared to those detected by photo diodes. The experimental results demonstrate the feasibility of this method. The approach can play a significant role for photo-dosimetry in biomedical phototherapy.展开更多
A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared ...A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.展开更多
In search of nonlinear oscillations, we envision a 3D elliptic curva-ture-dependent nonuniform charge distribution to creating an electric field along the symmetry axis causing a massive point-like charged particle pl...In search of nonlinear oscillations, we envision a 3D elliptic curva-ture-dependent nonuniform charge distribution to creating an electric field along the symmetry axis causing a massive point-like charged particle placed on the symmetry axis to oscillate in a delayed/hesitant nonlinear mode. The charge distribution is a 3D twisted line creating nontrivial electric field causing an unexpected oscillation that is non-orthodox defying the common sense. Calculation of this research flavored investigation is entirely based on utilities accompanied with Computer Algebra Systems (CAS) especially <em>Mathematic</em> [1]. The characteristics of the delayed oscillations in addition to embodying classic graphics displaying the time-dependent kinematic quantities are augmented including various phase diagrams signifying the nonlinear oscillations. The output of our investigation is compared to nonlinear non-delayed oscillations revealing fresh insight. For comprehensive understanding of the hesitant oscillator a simulation program is crafted clarifying visually the scenario on hand.展开更多
Two near field methods, namely the integral method and differential method, were presented for giving second order mean drift forces and moments between two fixed submerged bodies in regular waves. For the integral ...Two near field methods, namely the integral method and differential method, were presented for giving second order mean drift forces and moments between two fixed submerged bodies in regular waves. For the integral method, with a series of mathematical manipulations, second order drift forces and moments could be easily expressed by distributed sources which could be calculated by source distribution techniques with the assumption that the amplitude of ship motions are small on the basis of the linear 3D frequency theory. For the differential method, drift forces and moments could be expressed by the derivative of velocity potential with respect to space coordinate. Because two bodies would behave as a single body while the clearance is very large, the numerical results of one sphere in such case were given and compared with analytical results of a single sphere which does not involve the effect of free surface. When submerged depth becomes enough large, a good agreement can be reached. Then the integral method was used to predict the second order drift forces and moments of two submerged spheres and spheroids with a small lateral separation distance in waves compared with the numerical results obtained by the differential method and they agree well. By comparison, it indicates the interaction effects between two submerged bodies have a profound influence on the drift forces and moments. In this paper, the forward speed effect on submerged spheres was also considered.展开更多
This study presents the results of the 3D microstructure,thermal conductivity,and heat flow in cement-based foams and examines their changes with a range of densities.Images were captured using X-ray micro computed to...This study presents the results of the 3D microstructure,thermal conductivity,and heat flow in cement-based foams and examines their changes with a range of densities.Images were captured using X-ray micro computed tomography(micro-CT)imaging technique on cement-based foam samples prepared with densities of 400,600,and 800 kg/m^(3).These images were later simulated and quantified using 3D data visualization and analysis software.Based on the analysis,the pore volume of 11000µm^(3)was determined across the three densities,leading to optimal results.However,distinct pore diameters of 15µm for 800 kg/m^(3),and 20µm for 600 and 400 kg/m^(3)were found to be optimum.Most of the pores were spherical,with only 10%appearing elongated or fractured.In addition,a difference of 15%was observed between the 2D and 3D porosity results.Moreover,a difference of 5%was noticed between the experimentally measured thermal conductivity and the numerically predicted value and this variation was constant across the three cast densities.The 3D model showed that heat flows through the cement paste solids and with an increase in porosity this flow reduces.展开更多
Currently,the three-dimensional(3D)distribution and characteristics of air pollution cannot be understood based on the application of any single atmospheric monitoring technology.Long-term,high-precision and large-sca...Currently,the three-dimensional(3D)distribution and characteristics of air pollution cannot be understood based on the application of any single atmospheric monitoring technology.Long-term,high-precision and large-scale 3D atmospheric monitoring might become practical by combining heterogeneous modern technologies;for this purpose,the SpaceAir-Ground integrated system is a promising concept.In this system,optical remote sensing technologies employing fixed or mobile platforms are used as the main means for groundbased observations.Tethered balloons,unmanned aerial vehicles(UAV)and airborne platforms serve as the air-based observation segment.The final part,satellite remote sensing,corresponds to space-based observations.Aside from obtaining the 3D distribution of air pollution,research on emission estimation and pollution mechanisms has been extensively implemented based on the strengths of this system or some portion of it.Moreover,further research on the fusion of multi-source data,optimization of inversion algorithms,and coupling with atmospheric models is of great importance to the realization of this system.展开更多
Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too ...Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified.展开更多
Research on the characteristics of faults and their evolutionary history since the Cretaceous in the Suhongtu-Dagu depressions can provide a theoretical basis for geological evaluation of the coal seams in the Suhongt...Research on the characteristics of faults and their evolutionary history since the Cretaceous in the Suhongtu-Dagu depressions can provide a theoretical basis for geological evaluation of the coal seams in the Suhongtu Formation in the northern-central region of the Yin’e Basin.Using 3-D seismic-logging inversion techniques,seismic stratigraphic calibration,stratigraphic sequence delineation,and thickness calculations on the Suhongtu-Dagu depressions were carried out to clarify the planar and profile distributions of the faults,as well as the evolutionary history of these faults and the tectonic history of the depressions.The results of this study revealed that the distribution of the faults in the Suhongtu-Dagu depressions in the northern part of the Yin’e Basin varies with region,and the fault system was multi-period,orthotropic,north-east-trending,and north-north-east-trending,with a certain degree of inheritance in terms of the geological setting.Three types of faults were identified:Y-shaped fractures,reverse Y-shaped fractures,and parallel fractures,which can be classified as Paleozoic-Cenozoic continuous syncline faults and intra-depression faults from the top of the Permian to the Upper Cretaceous series and inter-stratigraphic adjustment faults within the Cretaceous System,respectively.The evolution of these faults can be divided into three phases:the controlling faults were the faults that existed before the Early Cretaceous and had been active since then;synclinal faults that formed during the Early Cretaceous;and modified faults that formed since the Early Cretaceous.The development and modification of the coal seams in the Cretaceous Suhongtu Formation in the Hari,Kuanzihu,and Babei sags were strongly controlled and influenced by a multi-phase complex fault system.展开更多
We present experimental investigations and numerical simulations of a pseudo-2D riser. Experiments were performed for various airflow rates, particle types/diameters, and particle size distributions. Pres- sure distri...We present experimental investigations and numerical simulations of a pseudo-2D riser. Experiments were performed for various airflow rates, particle types/diameters, and particle size distributions. Pres- sure distributions along the wall of the riser were measured, Additional measurements from a smaller pseudo-2D riser (Kallio et al., 2009; Shah et al., 2012) were used to analyze horizontal solids volume fraction profiles. The experimental data were compared with simulation results carried out using an Euler-Euler approach, A mesh sensitivity study was conducted for numerical simulations and effects associated with simplifying real 3D geometry to a 2D model were examined. In addition, the effect of using an algebraic equation to represent the granular temperature versus a full partial differential equation also was examined for numerical simulations. Results showed small but significant near-wall sensitivity of the flow variables to mesh size. Substantial differences in mean pressure, solids distribution, and solid velocities were obtained, when 2D and 3D simulation results were compared. Finally, applying the simplified granular temperature equation for turbulent fluidization and for dilute-phase transport can lead to incorrect predictions in models,展开更多
基金supported by the National Key R&D Program of China (Grant No. 2021YFA0715101)supported by the Chinese 111 Project (Contract No. B20011)+1 种基金the Fundamental Research Funds for the Central Universitiessupported by the Innovation Experimental Class Program
文摘In this work,we aim to investigate the origin of the magnetic carriers in the lunar crust and the intensity of the ancient dynamo field.The magnetization and depth range of magnetic carriers are studied under a weak and a strong magnetic anomaly in Mare Tranquillitatis and in Oceanus Procellarum,respectively,where the surface ages are 3.6 and 3.3 billion years.A sophisticated three-dimensional amplitude inversion software program from a geophysical survey is used to reconstruct the distributions of magnetization in the lunar crust.Because no globally measured surface magnetic field exists for the Moon,a crustal magnetic anomaly model with a grid resolution of 0.2°is used.The depth range of the magnetic source is fixed by the boundary identified by a relative criterion,which is 20%of the recovered maximum magnetization.The central burial depths of the magnetic carriers are approximately 15 km and 25 km under Reiner Gamma and Mare Tranquillitatis,respectively.The volumes of the two magnetic sources are at scales of 104 and 105 km3,respectively.The aforementioned differences may imply a hotter crust under Reiner Gamma than Mare Tranquillitatis by 3.3 billion years.The results support the view that the magma intrusions magnetized by an ancient magnetic field could be the origin of magnetic anomalies under Reiner Gamma and Mare Tranquillitatis.Compared with previous works,the maximum magnetization of 3 A/m under Reiner Gamma supports the intensity of the field being several microteslas.
基金supported by the Key Project Fund of the Chinese Academy of Sciences under grant number (kzcx2-yw-203-01)the Major State Basic Research Development Program of China(973 Program,Grant No.2007CB41170404)
文摘Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.
基金funded through the support of the Swedish Transport Administration through Better Interactions in Geotechnics(BIG)the Rock engineering Research Foundation(BeFo)Tyrens AB。
文摘Due to associated uncertainties,modelling the spatial distribution of depth to bedrock(DTB) is an important and challenging concern in many geo-engineering applications.The association between DTB,the safety and economy of design structures implies that generating more precise predictive models can be of vital interest.In the present study,the challenge of applying an optimally predictive threedimensional(3D) spatial DTB model for an area in Stockholm,Sweden was addressed using an automated intelligent computing design procedure.The process was developed and programmed in both C++and Python to track their performance in specified tasks and also to cover a wide variety of diffe rent internal characteristics and libraries.In comparison to the ordinary Kriging(OK) geostatistical tool,the superiority of the developed automated intelligence system was demonstrated through the analysis of confusion matrices and the ranked accuracies of different statistical errors.The re sults showed that in the absence of measured data,the intelligence models as a flexible and efficient alternative approach can account for associated uncertainties,thus creating more accurate spatial 3D models and providing an appropriate prediction at any point in the subsurface of the study area.
基金supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2009CB320904the National Natural Science Foundation of China under Grants No. 61121002, No. 61231010, 91120004the Key Projects in the National Science and Technology Pillar Program under Grant No. 2011BAH08B03
文摘2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor required for conversion. In this paper, we introduce a distributed 2D-to-3D video conversion system that includes a 2D-to-3D video conversion module, architecture of the parallel computation on the cloud, and 3D video coding in the system. The system enables cooperation among multiple users in the simultaneous completion of their conversion tasks so that the conversion efficiency is greatly promoted. In the experiments, we evaluate the system based on criteria related to both time consumption and video coding performance.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12102312 and 41372314)State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Open Foundation, Chengdu University of Technology, China (Grant No. SKLGP2021K011)
文摘Due to seasonal climate alterations,the microstructure and permeability of granite residual soil are easily affected by multiple dry-wet cycles.The X-ray micro computed tomography(micro-CT)acted as a nondestructive tool for characterizing the microstructure of soil samples exposed to a range of damage levels induced by dry-wet cycles.Subsequently,the variations of pore distribution and permeability due to drywet cycling effects were revealed based on three-dimensional(3D)pore distribution analysis and seepage simulations.According to the results,granite residual soils could be separated into four different components,namely,pores,clay,quartz,and hematite,from micro-CT images.The reconstructed 3D pore models dynamically demonstrated the expanding and connecting patterns of pore structures during drywet cycles.The values of porosity and connectivity are positively correlated with the number of dry-wet cycles,which were expressed by exponential and linear functions,respectively.The pore volume probability distribution curves of granite residual soil coincide with the χ^(2)distribution curve,which verifies the effectiveness of the assumption of χ^(2)distribution probability.The pore volume distribution curves suggest that the pores in soils were divided into four types based on their volumes,i.e.micropores,mesopores,macropores,and cracks.From a quantitative and visual perspective,considerable small pores are gradually transformed into cracks with a large volume and a high connectivity.Under the action of dry-wet cycles,the number of seepage flow streamlines which contribute to water permeation in seepage simulation increases distinctly,as well as the permeability and hydraulic conductivity.The calculated hydraulic conductivity is comparable with measured ones with an acceptable error margin in general,verifying the accuracy of seepage simulations based on micro-CT results.
基金support of JASSO to conduct this research work during the author’s stay at Japan
文摘Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.
基金supported by the National Natural Science Foundation of China(No.61178089/81201124)in part by the Natural Science Foundation of Fujian Province(No.2011Y0019)
文摘Measurement of light distribution in biological tissue contributes to selecting strategy and optimizing dose for biomedical application. In this letter, a photoacoustic method combined with Monte Carlo simulation was used to estimate the three-dimensional light distribution in biological tissue. The light distribution was produced by a cylindrical diffuser which interposed into tissues. The light profiles obtained by the method were compared to those detected by photo diodes. The experimental results demonstrate the feasibility of this method. The approach can play a significant role for photo-dosimetry in biomedical phototherapy.
基金Project(50977064) supported by the National Natural Science Foundation of China
文摘A 3D temperature field distribution of biological tissue for superficial hyperthermia using a pulse modulated microwave (PMMW) was presented. A 3D sliced homogeneous phantom was radiated by the PMMW and an infrared thermal imager was applied to image temperature distribution throughout the phantom. The period of the PMMW is 3 s and the output power is 35 W. The temperature rises by at least 3 ℃ in the phantom when the duty cycle varies from 1/3, 1/2, 2/3 to 1 (denoted by scenarios 1-4). Both the accumulative temperature-volume histogram and the relative depth-area ratio histogram show that the maximum temperature rise (MTR) is 6.6 and 8 ℃ in scenarios 2 and 3, and they are superior to scenarios 1 and 4. Furthermore, the PMMW can control temperature field distribution of biological tissue. It provides both preliminary basis for thermal volume control and new technology for temperature control and monitor in superficial hyperthermia.
文摘In search of nonlinear oscillations, we envision a 3D elliptic curva-ture-dependent nonuniform charge distribution to creating an electric field along the symmetry axis causing a massive point-like charged particle placed on the symmetry axis to oscillate in a delayed/hesitant nonlinear mode. The charge distribution is a 3D twisted line creating nontrivial electric field causing an unexpected oscillation that is non-orthodox defying the common sense. Calculation of this research flavored investigation is entirely based on utilities accompanied with Computer Algebra Systems (CAS) especially <em>Mathematic</em> [1]. The characteristics of the delayed oscillations in addition to embodying classic graphics displaying the time-dependent kinematic quantities are augmented including various phase diagrams signifying the nonlinear oscillations. The output of our investigation is compared to nonlinear non-delayed oscillations revealing fresh insight. For comprehensive understanding of the hesitant oscillator a simulation program is crafted clarifying visually the scenario on hand.
文摘Two near field methods, namely the integral method and differential method, were presented for giving second order mean drift forces and moments between two fixed submerged bodies in regular waves. For the integral method, with a series of mathematical manipulations, second order drift forces and moments could be easily expressed by distributed sources which could be calculated by source distribution techniques with the assumption that the amplitude of ship motions are small on the basis of the linear 3D frequency theory. For the differential method, drift forces and moments could be expressed by the derivative of velocity potential with respect to space coordinate. Because two bodies would behave as a single body while the clearance is very large, the numerical results of one sphere in such case were given and compared with analytical results of a single sphere which does not involve the effect of free surface. When submerged depth becomes enough large, a good agreement can be reached. Then the integral method was used to predict the second order drift forces and moments of two submerged spheres and spheroids with a small lateral separation distance in waves compared with the numerical results obtained by the differential method and they agree well. By comparison, it indicates the interaction effects between two submerged bodies have a profound influence on the drift forces and moments. In this paper, the forward speed effect on submerged spheres was also considered.
文摘This study presents the results of the 3D microstructure,thermal conductivity,and heat flow in cement-based foams and examines their changes with a range of densities.Images were captured using X-ray micro computed tomography(micro-CT)imaging technique on cement-based foam samples prepared with densities of 400,600,and 800 kg/m^(3).These images were later simulated and quantified using 3D data visualization and analysis software.Based on the analysis,the pore volume of 11000µm^(3)was determined across the three densities,leading to optimal results.However,distinct pore diameters of 15µm for 800 kg/m^(3),and 20µm for 600 and 400 kg/m^(3)were found to be optimum.Most of the pores were spherical,with only 10%appearing elongated or fractured.In addition,a difference of 15%was observed between the 2D and 3D porosity results.Moreover,a difference of 5%was noticed between the experimentally measured thermal conductivity and the numerically predicted value and this variation was constant across the three cast densities.The 3D model showed that heat flows through the cement paste solids and with an increase in porosity this flow reduces.
基金supported by the National Key Research and Development Program of China(No.2016YFC0200401)the National Natural Science Foundation of China(Nos.21777026,41775113,21976031 and 22176037)。
文摘Currently,the three-dimensional(3D)distribution and characteristics of air pollution cannot be understood based on the application of any single atmospheric monitoring technology.Long-term,high-precision and large-scale 3D atmospheric monitoring might become practical by combining heterogeneous modern technologies;for this purpose,the SpaceAir-Ground integrated system is a promising concept.In this system,optical remote sensing technologies employing fixed or mobile platforms are used as the main means for groundbased observations.Tethered balloons,unmanned aerial vehicles(UAV)and airborne platforms serve as the air-based observation segment.The final part,satellite remote sensing,corresponds to space-based observations.Aside from obtaining the 3D distribution of air pollution,research on emission estimation and pollution mechanisms has been extensively implemented based on the strengths of this system or some portion of it.Moreover,further research on the fusion of multi-source data,optimization of inversion algorithms,and coupling with atmospheric models is of great importance to the realization of this system.
基金Financial support from the following projects and organisa- tions are acknowledged: the China One Thousand Talent Scheme, the National Natural Science Foundation of China (NNSFC) under its Major Research Scheme of Meso-scale Mechanism and Control in Multi-phase Reaction Processes (project reference: 91434126), the Natural Science Foundation of Guangdong Province (project reference: 2014A030313228), the UK Engineering and Physical Sciences Research Council (EPSRC) for the projects of Shape (EP/C009541) and StereoVision (EP/E045707), and the Technology Strategy Board (TSB) for the project of High Value Manufacturing CGM (TP/BD059E).
文摘Crystal morphology is known to be of great importance to the end-use properties of crystal products, and to affect down-stream processing such as filtration and drying. However, it has been previously regarded as too challenging to achieve automatic closed-loop control. Previous work has focused on controlling the crystal size distribution, where the size of a crystal is often defined as the diameter of a sphere that has the same volume as the crystal. This paper reviews the new advances in morphological population balance models for modelling and simulating the crystal shape distribution (CShD), measuring and estimating crystal facet growth kinetics, and two- and three-dimensional imaging for on-line characterisation of the crystal morphology and CShD. A framework is presented that integrates the various components to achieve the ultimate objective of model-based closed-loop control of the CShD. The knowledge gaps and challenges that require further research are also identified.
基金We thank LetPub for its linguistic assistance during the preparation of this manuscript.This work is granted by the National Natural Science Foundation of China(Grant No.42272152)the Major Projects from the Changqing Oilfield of PetroChina(No.ZDZX2021)+2 种基金the Fundamental Research Funds for the Central Universities,CHD(No.300102272205)the Fundamental Research Funds for platform of Liangshan Characteristic Agriculture(015/500827)the Innovation and Entrepreneurship Training Program for University Students,CHD(No.G202210710050).
文摘Research on the characteristics of faults and their evolutionary history since the Cretaceous in the Suhongtu-Dagu depressions can provide a theoretical basis for geological evaluation of the coal seams in the Suhongtu Formation in the northern-central region of the Yin’e Basin.Using 3-D seismic-logging inversion techniques,seismic stratigraphic calibration,stratigraphic sequence delineation,and thickness calculations on the Suhongtu-Dagu depressions were carried out to clarify the planar and profile distributions of the faults,as well as the evolutionary history of these faults and the tectonic history of the depressions.The results of this study revealed that the distribution of the faults in the Suhongtu-Dagu depressions in the northern part of the Yin’e Basin varies with region,and the fault system was multi-period,orthotropic,north-east-trending,and north-north-east-trending,with a certain degree of inheritance in terms of the geological setting.Three types of faults were identified:Y-shaped fractures,reverse Y-shaped fractures,and parallel fractures,which can be classified as Paleozoic-Cenozoic continuous syncline faults and intra-depression faults from the top of the Permian to the Upper Cretaceous series and inter-stratigraphic adjustment faults within the Cretaceous System,respectively.The evolution of these faults can be divided into three phases:the controlling faults were the faults that existed before the Early Cretaceous and had been active since then;synclinal faults that formed during the Early Cretaceous;and modified faults that formed since the Early Cretaceous.The development and modification of the coal seams in the Cretaceous Suhongtu Formation in the Hari,Kuanzihu,and Babei sags were strongly controlled and influenced by a multi-phase complex fault system.
文摘We present experimental investigations and numerical simulations of a pseudo-2D riser. Experiments were performed for various airflow rates, particle types/diameters, and particle size distributions. Pres- sure distributions along the wall of the riser were measured, Additional measurements from a smaller pseudo-2D riser (Kallio et al., 2009; Shah et al., 2012) were used to analyze horizontal solids volume fraction profiles. The experimental data were compared with simulation results carried out using an Euler-Euler approach, A mesh sensitivity study was conducted for numerical simulations and effects associated with simplifying real 3D geometry to a 2D model were examined. In addition, the effect of using an algebraic equation to represent the granular temperature versus a full partial differential equation also was examined for numerical simulations. Results showed small but significant near-wall sensitivity of the flow variables to mesh size. Substantial differences in mean pressure, solids distribution, and solid velocities were obtained, when 2D and 3D simulation results were compared. Finally, applying the simplified granular temperature equation for turbulent fluidization and for dilute-phase transport can lead to incorrect predictions in models,