This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand ...This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand the response of these advanced materials under extreme conditions, which is crucial for applications in aerospace, military, and other high-performance industries. SupercompositeTM (CZE) prepreg, made up of a 3K plain weave carbon fabric with milled carbon fibers as interlaminar reinforcements impregnated with epoxy, is used to create SupercompositeTM (CZE) laminates. A woven carbon composite (CBE) laminate was also created using 3K plain weave Carbon/Epoxy (CBE) prepreg. Both types of laminates were designed and fabricated using the autoclave process. The dynamic behaviors of CZE and CBE laminate under transverse compression loads were evaluated using a modified Split Hopkinson Pressure Bar (SHPB). The study found that the 3D reinforcement with milled carbon fibers significantly affected the dynamic behavior of the CZE laminate. Stereo imaging videos, captured using two SHIMADZU high-speed video cameras in shock tube experiments, recorded the time history of back surface deflection. The plate specimens exhibited low deflections without any visible damage. The experimentally observed center point deflections of the CZE plates decayed sooner than those of the CBE laminates, indicating an improvement in damping due to the presence of 3D reinforced milled carbon fibers. This research shows that optimized utilization of milled carbon fibers as 3D reinforcement can withstand high stress in the thickness direction and higher energy absorption when subjected to impact and high strain-rate loading.展开更多
This work is dedicated to the experimental study of the shear properties of three-dimensional reinforced composites taking into account their structural features,in Iosipescu tests.Shear strains have been determined u...This work is dedicated to the experimental study of the shear properties of three-dimensional reinforced composites taking into account their structural features,in Iosipescu tests.Shear strains have been determined using Vic-3D non-contact three-dimensional digital optical system.The evolution of inhomogeneous strain fields on the surface of composite specimens of the structure under study has been analyzed.The variants of strain averaging in the specimen working area have been analyzed using Vic-3D tools.AMSY-6 acoustic emission system has been used to assess the structural integrity of composite materials under loading.展开更多
文摘This study focuses on assessing the dynamic behaviors of carbon SupercompositeTM laminates when subjected to high strain-rates and air blast loads, using a shock tube for testing. The investigation aims to understand the response of these advanced materials under extreme conditions, which is crucial for applications in aerospace, military, and other high-performance industries. SupercompositeTM (CZE) prepreg, made up of a 3K plain weave carbon fabric with milled carbon fibers as interlaminar reinforcements impregnated with epoxy, is used to create SupercompositeTM (CZE) laminates. A woven carbon composite (CBE) laminate was also created using 3K plain weave Carbon/Epoxy (CBE) prepreg. Both types of laminates were designed and fabricated using the autoclave process. The dynamic behaviors of CZE and CBE laminate under transverse compression loads were evaluated using a modified Split Hopkinson Pressure Bar (SHPB). The study found that the 3D reinforcement with milled carbon fibers significantly affected the dynamic behavior of the CZE laminate. Stereo imaging videos, captured using two SHIMADZU high-speed video cameras in shock tube experiments, recorded the time history of back surface deflection. The plate specimens exhibited low deflections without any visible damage. The experimentally observed center point deflections of the CZE plates decayed sooner than those of the CBE laminates, indicating an improvement in damping due to the presence of 3D reinforced milled carbon fibers. This research shows that optimized utilization of milled carbon fibers as 3D reinforcement can withstand high stress in the thickness direction and higher energy absorption when subjected to impact and high strain-rate loading.
基金the Russian Foundation for Basic Research within the Projects(Grants 19-31-90148 and 18-01-00763)The experimental studies of shear material properties were conducted within the State Assignment of the Ministry of Education and Science of the Russian Federation(9.7529.2017/9.10).
文摘This work is dedicated to the experimental study of the shear properties of three-dimensional reinforced composites taking into account their structural features,in Iosipescu tests.Shear strains have been determined using Vic-3D non-contact three-dimensional digital optical system.The evolution of inhomogeneous strain fields on the surface of composite specimens of the structure under study has been analyzed.The variants of strain averaging in the specimen working area have been analyzed using Vic-3D tools.AMSY-6 acoustic emission system has been used to assess the structural integrity of composite materials under loading.