axis NC machining freeform surface with a flat end cutter can theoretically improve material removal rate and surface finish, but it is very difficult to generate a gouge free cutter location. A new method of gener...axis NC machining freeform surface with a flat end cutter can theoretically improve material removal rate and surface finish, but it is very difficult to generate a gouge free cutter location. A new method of generating optimal cutter path is proposed to define the effective radius of a flat end cutter and determine the optimal step forward distance and step over distance. Thereby improving the NC machining efficiency and quality of freeform surfaces.展开更多
In order to estimate the motion errors of 5-axis machine center, the double ball bar (DBB) method is adopted to realize the diagnosis procedure. The motion error sources of rotary axes in 5-axis machining center com...In order to estimate the motion errors of 5-axis machine center, the double ball bar (DBB) method is adopted to realize the diagnosis procedure. The motion error sources of rotary axes in 5-axis machining center comprise of the alignment error of rotary axes and the angular error due to various factors, e.g. the inclination of rotary axes. From sensitive viewpoints, each motion error is possible to have a particular sensitive direction in which deviation of DBB error trace arises from only some specific error sources. The model of the DBB error trace is established according to the spatial geometry theory. Accordingly, the sensitive direction of each motion error source is made clear through numerical simulation, which is used as the reference patterns for rotational error estimation. The estimation method is proposed to easily estimate the motion error sources of rotary axes in quantitative manner. To verify the proposed DBB method for rotational error estimation, the experimental tests are carried out on a 5-axis machining center M-400 (MORISEIKI). The effect of the mismatch of the DBB is also studied to guarantee the estimation accuracy. From the experimental data, it is noted that the proposed estimation method for 5-axis machining center is feasible and effective.展开更多
An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed ...An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed CAM module for manufacturing impeller according to their CAM software.But these dedicated modules are difficult to use for inexperienced users.The purpose of this work is to develop a tool-path generation module for impellers.For this purpose,it is based on Visual Basic language and used CATIA graphical environment.The result of simulation for generated tool-path by the module is satisfactory.And it has slow processing speed compared to other commercial modules,but it is easy to use.展开更多
A real-time non-uniform rational B-spline (NURBS) surface interpolator is proposed and 5-axis machining method with a flat-end cutter is discussed. With the Taylor expansion and the coordinate transformation, the al...A real-time non-uniform rational B-spline (NURBS) surface interpolator is proposed and 5-axis machining method with a flat-end cutter is discussed. With the Taylor expansion and the coordinate transformation, the algorithms of NURBS interpolation, cutter effective machining radius, cutter offsetting and.inverse kinematics are deduced and implemented, respectively. Different from the conventional free-form surface machining, the proposed interpolator can real-time generate the motion commands of computer numerical control (CNC) machines with CC feedrate, rather than that of CL. An example part surface is demonstrated and the results of simulation show that the proposed method can be applied in actual 5-axis surface machining.展开更多
In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the in...In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the inverse kinematics,and a windows-based postprocessor written with Visual Basic was developed according to the proposed algorithm.The developed postprocessor is a general system suitable for all kinds of 5-axis machines with orthogonal and non-orthogonal rotary axes.Through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment,the effectiveness of the proposed algorithm is confirmed.Compatibility is improved by allowing exchange of data formats such as rotational total center position(RTCP) controlled NC data,vector post NC data,and program object file(POF) cutter location(CL) data,and convenience is increased by adding the function of work-piece origin offset.Consequently,a practical post-processor for 5-axis machining is developed.展开更多
By making use of the advantages of non-uniform rational B-spline (NURBS) curves to represent spatial curves, an instruction format with double NURBS curves suitable for 5-axis coordinated real-time interpolation is ...By making use of the advantages of non-uniform rational B-spline (NURBS) curves to represent spatial curves, an instruction format with double NURBS curves suitable for 5-axis coordinated real-time interpolation is presented to replace the current 5-axis coordinated linear interpolation method defective in low-speed, low-accuracy and enormous numerical control (NC) files in sculptured surface machining. A generation procedure of the NC files with the presented format is introduced and the method to realize the interpolation in an open computer numerical control (CNC) system is developed by ourselves. These illustrated the feasibility of the proposed method and its capability of avoiding all the shortages of 5-axis linear interpolation method.展开更多
NC machining path of sculptured surfaces in CAD/CAM system plays an important role on manufacture. This paper describes a new algorithm for 5 axis machining of sculptured surfaces and the algorithm is interference fr...NC machining path of sculptured surfaces in CAD/CAM system plays an important role on manufacture. This paper describes a new algorithm for 5 axis machining of sculptured surfaces and the algorithm is interference free. The approach includes: (1) the tesselation of the parametric surfaces into triangles; (2) building topological relations among triangles;(3) 5 axis tool path generation; (4) interference detection and tool position correction.展开更多
The problem of finished surface being not first-order continuous commonly exists in machining sculptured surfaces with a torus cutter and some other types of cutters. To solve this problem, a dual drive curve tool pat...The problem of finished surface being not first-order continuous commonly exists in machining sculptured surfaces with a torus cutter and some other types of cutters. To solve this problem, a dual drive curve tool path planning method is proposed in this article. First, the maximum machining strip width of a whole tool path can be obtained through optimizing each tool position with multi-point machining (MPM) method. Second, two drive curves are then determined according to the obtained maximum machining strip width. Finally, the tool is positioned once more along the dual drive curve under the condition of tool path smoothness. A computer simulation and cutting experiments are carried out to testify the performance of the new method. The machined surface is measured with a coordinate measuring machine (CMM) to examine the machining quality. The results obtained show that this method can effectively eliminate sharp scallops between adjacent tool paths, keep tool paths smooth, and improve the surface machining quality as well as machining efficiency.展开更多
A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind m...A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind milling tool and a 5-axis CNC horizontal milling machine are introduced. This new milling model can efficiently enlarge the material removal volume at the tip of the whirlwind milling tool and improve the producing capacity. The machining strategy of this model is to regulate the orientation of the whirlwind milling tool relatively to the principal directions of the workpiece surface at the point of contact, so as to create a full match with collision avoidance between the workpiece surface and the symmetric rotational surface of the milling tool. The practical results show that this new milling model is an effective method in machining complex three- dimensional surfaces. This model has a good improvement on finishing machining time and scallop height in machining the freeform surfaces over other milling processes. Some actual examples for manufacturing the freeform surfaces with this new model are given.展开更多
Tool path generation is a fundamental problem in 5-axis CNC machining, which consists of tool orientation planning and cutter-contact(CC) point planning. The planning strategy highly depends on the type of tool cutter...Tool path generation is a fundamental problem in 5-axis CNC machining, which consists of tool orientation planning and cutter-contact(CC) point planning. The planning strategy highly depends on the type of tool cutters. For ball-end cutters, the tool orientation and CC point location can be planned separately;while for flat end cutters, the two are highly dependent on each other. This paper generates a smooth tool path of workpiece surfaces for flat end mills from two stages: Computing smooth tool orientations on the surface without gouging and collisions and then designing the CC point path. By solving the tool posture optimization problem the authors achieve both the path smoothness and the machining efficiency. Experimental results are provided to show the effectiveness of the method.展开更多
A 5-axis controller with curve interpolation function is developed to satisfy high-speed and high-precision computer numerical control (CNC) machining of machine parts with complex shapes in the authors-devised open C...A 5-axis controller with curve interpolation function is developed to satisfy high-speed and high-precision computer numerical control (CNC) machining of machine parts with complex shapes in the authors-devised open CNC system. The instruction for- mat of this interpolation method and the generation procedure of the numerical control (NC) files are introduced. The interpola- tion curves of both position vectors and orientation vectors constructed by the controller are C2 continuous and independent of machin...展开更多
A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine. This machine is designed to serve a specific purpose to attain high accuracy and high efficien...A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine. This machine is designed to serve a specific purpose to attain high accuracy and high efficiency grinding of turbine blades by eliminating the hand grinding process. Although its topology is RPPPR (P: prismatic; R: rotary), its design is quite distinct from the competitive machine tools. As error quantification is the only way to investigate, maintain and improve its accuracy, calibra- tion is recommended for its performance assessment and acceptance testing. Systematic geometric error modeling technique is implemented and 52 position dependent and position independent errors are identified while considering the machine as five rigid bodies by eliminating the set-up errors of workpiece and cutting tool. 39 of them are found to have influential errors and are accommodated for finding the resultant effect between the cutting tool and the workpiece in workspace volume. Rigid body kinematics techniques and homogenous transformation matrices are used for error synthesis.展开更多
文摘axis NC machining freeform surface with a flat end cutter can theoretically improve material removal rate and surface finish, but it is very difficult to generate a gouge free cutter location. A new method of generating optimal cutter path is proposed to define the effective radius of a flat end cutter and determine the optimal step forward distance and step over distance. Thereby improving the NC machining efficiency and quality of freeform surfaces.
文摘In order to estimate the motion errors of 5-axis machine center, the double ball bar (DBB) method is adopted to realize the diagnosis procedure. The motion error sources of rotary axes in 5-axis machining center comprise of the alignment error of rotary axes and the angular error due to various factors, e.g. the inclination of rotary axes. From sensitive viewpoints, each motion error is possible to have a particular sensitive direction in which deviation of DBB error trace arises from only some specific error sources. The model of the DBB error trace is established according to the spatial geometry theory. Accordingly, the sensitive direction of each motion error source is made clear through numerical simulation, which is used as the reference patterns for rotational error estimation. The estimation method is proposed to easily estimate the motion error sources of rotary axes in quantitative manner. To verify the proposed DBB method for rotational error estimation, the experimental tests are carried out on a 5-axis machining center M-400 (MORISEIKI). The effect of the mismatch of the DBB is also studied to guarantee the estimation accuracy. From the experimental data, it is noted that the proposed estimation method for 5-axis machining center is feasible and effective.
基金Project supported by the Second Stage of Brain Korea 21 Projects
文摘An impeller is difficult to machine because of severe collision due to the complex shape,overlapping and twisted shape of the impeller blades.So,most computer aided manufacturing(CAM)software companies have developed CAM module for manufacturing impeller according to their CAM software.But these dedicated modules are difficult to use for inexperienced users.The purpose of this work is to develop a tool-path generation module for impellers.For this purpose,it is based on Visual Basic language and used CATIA graphical environment.The result of simulation for generated tool-path by the module is satisfactory.And it has slow processing speed compared to other commercial modules,but it is easy to use.
文摘A real-time non-uniform rational B-spline (NURBS) surface interpolator is proposed and 5-axis machining method with a flat-end cutter is discussed. With the Taylor expansion and the coordinate transformation, the algorithms of NURBS interpolation, cutter effective machining radius, cutter offsetting and.inverse kinematics are deduced and implemented, respectively. Different from the conventional free-form surface machining, the proposed interpolator can real-time generate the motion commands of computer numerical control (CNC) machines with CC feedrate, rather than that of CL. An example part surface is demonstrated and the results of simulation show that the proposed method can be applied in actual 5-axis surface machining.
基金Work supported by the Second Stage of Brain Korea 21 Projects
文摘In order to develop a practical postprocessor for 5-axis machine tool,the general equations of numerically controlled(NC) data for 5-axis configurations with non-orthogonal rotary axes were exactly expressed by the inverse kinematics,and a windows-based postprocessor written with Visual Basic was developed according to the proposed algorithm.The developed postprocessor is a general system suitable for all kinds of 5-axis machines with orthogonal and non-orthogonal rotary axes.Through implementation of the developed postprocessor and verification by a cutting simulation and machining experiment,the effectiveness of the proposed algorithm is confirmed.Compatibility is improved by allowing exchange of data formats such as rotational total center position(RTCP) controlled NC data,vector post NC data,and program object file(POF) cutter location(CL) data,and convenience is increased by adding the function of work-piece origin offset.Consequently,a practical post-processor for 5-axis machining is developed.
文摘By making use of the advantages of non-uniform rational B-spline (NURBS) curves to represent spatial curves, an instruction format with double NURBS curves suitable for 5-axis coordinated real-time interpolation is presented to replace the current 5-axis coordinated linear interpolation method defective in low-speed, low-accuracy and enormous numerical control (NC) files in sculptured surface machining. A generation procedure of the NC files with the presented format is introduced and the method to realize the interpolation in an open computer numerical control (CNC) system is developed by ourselves. These illustrated the feasibility of the proposed method and its capability of avoiding all the shortages of 5-axis linear interpolation method.
文摘NC machining path of sculptured surfaces in CAD/CAM system plays an important role on manufacture. This paper describes a new algorithm for 5 axis machining of sculptured surfaces and the algorithm is interference free. The approach includes: (1) the tesselation of the parametric surfaces into triangles; (2) building topological relations among triangles;(3) 5 axis tool path generation; (4) interference detection and tool position correction.
基金National Natural Science Foundation of China (50875012)National High-tech Research and Development Program (2008AA04Z124)+1 种基金National Science and Technology Major Project (2009ZX04001-141)Joint Construction Project of Beijing Municipal Commission of Education
文摘The problem of finished surface being not first-order continuous commonly exists in machining sculptured surfaces with a torus cutter and some other types of cutters. To solve this problem, a dual drive curve tool path planning method is proposed in this article. First, the maximum machining strip width of a whole tool path can be obtained through optimizing each tool position with multi-point machining (MPM) method. Second, two drive curves are then determined according to the obtained maximum machining strip width. Finally, the tool is positioned once more along the dual drive curve under the condition of tool path smoothness. A computer simulation and cutting experiments are carried out to testify the performance of the new method. The machined surface is measured with a coordinate measuring machine (CMM) to examine the machining quality. The results obtained show that this method can effectively eliminate sharp scallops between adjacent tool paths, keep tool paths smooth, and improve the surface machining quality as well as machining efficiency.
基金China Postdoctoral Science Foundation(No.2005037348)Science and Technology Research Program of Hubei Province,Ministry of Education,China(No.D200612003)
文摘A new milling methodology with the equivalent normal curvature milling model machining freeform surfaces is proposed based on the normal curvature theorems on differential geometry. Moreover, a specialized whirlwind milling tool and a 5-axis CNC horizontal milling machine are introduced. This new milling model can efficiently enlarge the material removal volume at the tip of the whirlwind milling tool and improve the producing capacity. The machining strategy of this model is to regulate the orientation of the whirlwind milling tool relatively to the principal directions of the workpiece surface at the point of contact, so as to create a full match with collision avoidance between the workpiece surface and the symmetric rotational surface of the milling tool. The practical results show that this new milling model is an effective method in machining complex three- dimensional surfaces. This model has a good improvement on finishing machining time and scallop height in machining the freeform surfaces over other milling processes. Some actual examples for manufacturing the freeform surfaces with this new model are given.
基金supported by the National Natural Science Foundation of China under Grant No.11688101,61872332Beijing National Natural Science Foundation under Grant No.Z190004+1 种基金National Center for Mathematics and Interdisciplinary SciencesYouth Innovation Promotion Association of the Chinese Academy of Sciences。
文摘Tool path generation is a fundamental problem in 5-axis CNC machining, which consists of tool orientation planning and cutter-contact(CC) point planning. The planning strategy highly depends on the type of tool cutters. For ball-end cutters, the tool orientation and CC point location can be planned separately;while for flat end cutters, the two are highly dependent on each other. This paper generates a smooth tool path of workpiece surfaces for flat end mills from two stages: Computing smooth tool orientations on the surface without gouging and collisions and then designing the CC point path. By solving the tool posture optimization problem the authors achieve both the path smoothness and the machining efficiency. Experimental results are provided to show the effectiveness of the method.
基金Key Development Program of Science and Technology of Heilongjiang Province, China (GB05A501)
文摘A 5-axis controller with curve interpolation function is developed to satisfy high-speed and high-precision computer numerical control (CNC) machining of machine parts with complex shapes in the authors-devised open CNC system. The instruction for- mat of this interpolation method and the generation procedure of the numerical control (NC) files are introduced. The interpola- tion curves of both position vectors and orientation vectors constructed by the controller are C2 continuous and independent of machin...
文摘A systematic geometric model has been presented for calibration of a newly designed 5-axis turbine blade grinding machine. This machine is designed to serve a specific purpose to attain high accuracy and high efficiency grinding of turbine blades by eliminating the hand grinding process. Although its topology is RPPPR (P: prismatic; R: rotary), its design is quite distinct from the competitive machine tools. As error quantification is the only way to investigate, maintain and improve its accuracy, calibra- tion is recommended for its performance assessment and acceptance testing. Systematic geometric error modeling technique is implemented and 52 position dependent and position independent errors are identified while considering the machine as five rigid bodies by eliminating the set-up errors of workpiece and cutting tool. 39 of them are found to have influential errors and are accommodated for finding the resultant effect between the cutting tool and the workpiece in workspace volume. Rigid body kinematics techniques and homogenous transformation matrices are used for error synthesis.