This article presents an ongoing study of the design of a DC-AC inverter using a single renewable energy source. The proposed approach makes it possible to produce an output with an H-bridge or full bridge and a singl...This article presents an ongoing study of the design of a DC-AC inverter using a single renewable energy source. The proposed approach makes it possible to produce an output with an H-bridge or full bridge and a single energy source. To this end, the performance of the inverter was studied first by means of a simulation and then with the implementation of an experimental device.展开更多
A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The t...A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.展开更多
Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis...Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis, PSIM simulation and circuit experiment. A special limitation of soft-switching techniques has been found in their AC/DC applications.展开更多
Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter...Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter.The component package size for this capacitor is large due to its high voltage rating and capacitance value.In addition,the high charging current creates more pro-blems during the product compliance testing phase.The shelf life of these specific high value capacitors is less than that of Multilayer Ceramic Capacitors(MLCC),which limits its use for the highly reliable applications.This paper presents a fea-sibility study to overcome these two problems by adding a few sensing mechan-isms to the typical AC–DC converter topology.In majority of the AC–DC converter,Al-Elko capacitor takes approximately 3%to 5%of the converter size.The proposed method reduces this to approximately 50%size and so it effectively approximates 2%to 3%size reduction in converter size.The proposed method basically works based on the load current prediction method and hence it is highly suitable for the constant load application.Moreover,the converter response time increases in this method,which limit its application in high-speed systems.The high temperature application of Al-Elko capacitor is limited because of its poor performance,which is significantly rectified by replacing the Al-Elko with MLCC as it delivers good performance in high temperature.展开更多
An overview of recent advances in digital control of low-to medium-power DC/DC switching converters is presented.Traditionally,analog electronics methods have dominated in controlling such DC/DC converters.However,wit...An overview of recent advances in digital control of low-to medium-power DC/DC switching converters is presented.Traditionally,analog electronics methods have dominated in controlling such DC/DC converters.However,with the steadily decreasing cost of ICs,the feasibility of digitally controlled DC/DC switching converters has increased sig-nificantly.This paper outlines a sample of digital solutions for DC/DC switching converters to enhance the performance of DC/DC switching converters.Furthermore,latest research activities pertaining to applications for steady-state and dy-namic performance improvement,such as efficiency optimization,controller auto tuning,and capacitor charge balance control,is discussed.These applications demonstrate the significant advantages and potentials of digital control.展开更多
The soft switching operation principle and operation performance of rugged resonant pole (RRP) is given. The applications of RRP in soft switching DC DC converter and soft switching inverter are discussed in detail. R...The soft switching operation principle and operation performance of rugged resonant pole (RRP) is given. The applications of RRP in soft switching DC DC converter and soft switching inverter are discussed in detail. RRP can constitute buck boost soft switching DC DC converter and isolated soft switching DC DC converter with the automatic limitation performance of output power. Partial series resonant DC DC converter with RRP can realize the zero voltage/zero current switching of power devices. RR...展开更多
Dimmers are very widely applied in theatres,cinemas,dancing-parties, auditoriums and signal systems.They are usually supplied by single-stage AC/AC converters in the past with voltage regulation technique with the dis...Dimmers are very widely applied in theatres,cinemas,dancing-parties, auditoriums and signal systems.They are usually supplied by single-stage AC/AC converters in the past with voltage regulation technique with the disadvantages of high total harmonic distortion,low power factor and poor power transfer efficiency.This paper introduces a novel method-DC-modulation that implements DC/DC conversion technology into AC/AC converters.The DC-modulated single-stage PFC AC/AC converters effectively improved the power factor up to 0.999 and the power transfer efficiency up to 97.8 %.The experimental results verified our design and calculation.This technique will be widely used in light dimming and other industrial applications.展开更多
A novel topology of Integrated Boost-SEPIC (IBS) AC-DC converter using common part sharing method (CPSM) has been proposed in this paper. Conventional boost converters with bridge rectifier configuration are inefficie...A novel topology of Integrated Boost-SEPIC (IBS) AC-DC converter using common part sharing method (CPSM) has been proposed in this paper. Conventional boost converters with bridge rectifier configuration are inefficient due to limited voltage step-up ratio which may not be applicable for high step-up applications as in the case of micro generators. The proposed IBS topology is based on the common part sharing method capable of operating both for positive and negative half cycle of the input signal. Result and simulation were conducted using PSIM environment. The proposed AC-DC IBS topology eliminates the requirement of bridge rectifier achieving high efficiency (about 99%), improved power factor (0.75, leading) and lower THD (about 38.8%) which is within IEEE standard.展开更多
A design of the main AC/DC converter system for ITER is described and the configuration of the main AC/DC converters is presented. To reduce the reactive power absorbed from the converter units, the main AC/DC convert...A design of the main AC/DC converter system for ITER is described and the configuration of the main AC/DC converters is presented. To reduce the reactive power absorbed from the converter units, the main AC/DC converters are designed to be series-connected and work in a sequential mode. The structure of the regulator of the converter system is described. A simulation model was built up for the PSCAD/EMTDC code, and the design was validated accordingly. Harmonic analysis and reactive power calculation of the converters units are presented. The results reveal the advantage of sequential control in reducing reactive power and harmonics.展开更多
China is an important country in iron and steel industry.Power electronics converters are widely used.For the cold rolling mills of high speed,AC-DC-AC converters should be used.In the paper,the design and the control...China is an important country in iron and steel industry.Power electronics converters are widely used.For the cold rolling mills of high speed,AC-DC-AC converters should be used.In the paper,the design and the control system of the large power three-level AC - DC - AC converter with IGCTs is investigated,and a back-to-back large power three-level AC - DC - AC converter with IGCTs has been got. With a series experiments,the performance of the converter is examined.The experiment result indicates the converter reaches the design requirement and it shows excellent performance.The converter system has been put into use safely.It is estimated that the AC - DC - AC converter system will be used in the drive systems for rolling mills in the near future.展开更多
文摘This article presents an ongoing study of the design of a DC-AC inverter using a single renewable energy source. The proposed approach makes it possible to produce an output with an H-bridge or full bridge and a single energy source. To this end, the performance of the inverter was studied first by means of a simulation and then with the implementation of an experimental device.
文摘A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.
基金Sponsored by the Scientific Research Foundaltion fbr the Returned Overseas Chinese Scholars,Ministry of Education
文摘Soft-switching techniques are attractive to unity-power-factor AC/DC converter in the view of the size reduction and EMI suppression. A soft-switched boost PFC converter has been studied based on its topology analysis, PSIM simulation and circuit experiment. A special limitation of soft-switching techniques has been found in their AC/DC applications.
文摘Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter.The component package size for this capacitor is large due to its high voltage rating and capacitance value.In addition,the high charging current creates more pro-blems during the product compliance testing phase.The shelf life of these specific high value capacitors is less than that of Multilayer Ceramic Capacitors(MLCC),which limits its use for the highly reliable applications.This paper presents a fea-sibility study to overcome these two problems by adding a few sensing mechan-isms to the typical AC–DC converter topology.In majority of the AC–DC converter,Al-Elko capacitor takes approximately 3%to 5%of the converter size.The proposed method reduces this to approximately 50%size and so it effectively approximates 2%to 3%size reduction in converter size.The proposed method basically works based on the load current prediction method and hence it is highly suitable for the constant load application.Moreover,the converter response time increases in this method,which limit its application in high-speed systems.The high temperature application of Al-Elko capacitor is limited because of its poor performance,which is significantly rectified by replacing the Al-Elko with MLCC as it delivers good performance in high temperature.
文摘An overview of recent advances in digital control of low-to medium-power DC/DC switching converters is presented.Traditionally,analog electronics methods have dominated in controlling such DC/DC converters.However,with the steadily decreasing cost of ICs,the feasibility of digitally controlled DC/DC switching converters has increased sig-nificantly.This paper outlines a sample of digital solutions for DC/DC switching converters to enhance the performance of DC/DC switching converters.Furthermore,latest research activities pertaining to applications for steady-state and dy-namic performance improvement,such as efficiency optimization,controller auto tuning,and capacitor charge balance control,is discussed.These applications demonstrate the significant advantages and potentials of digital control.
文摘The soft switching operation principle and operation performance of rugged resonant pole (RRP) is given. The applications of RRP in soft switching DC DC converter and soft switching inverter are discussed in detail. RRP can constitute buck boost soft switching DC DC converter and isolated soft switching DC DC converter with the automatic limitation performance of output power. Partial series resonant DC DC converter with RRP can realize the zero voltage/zero current switching of power devices. RR...
文摘Dimmers are very widely applied in theatres,cinemas,dancing-parties, auditoriums and signal systems.They are usually supplied by single-stage AC/AC converters in the past with voltage regulation technique with the disadvantages of high total harmonic distortion,low power factor and poor power transfer efficiency.This paper introduces a novel method-DC-modulation that implements DC/DC conversion technology into AC/AC converters.The DC-modulated single-stage PFC AC/AC converters effectively improved the power factor up to 0.999 and the power transfer efficiency up to 97.8 %.The experimental results verified our design and calculation.This technique will be widely used in light dimming and other industrial applications.
文摘A novel topology of Integrated Boost-SEPIC (IBS) AC-DC converter using common part sharing method (CPSM) has been proposed in this paper. Conventional boost converters with bridge rectifier configuration are inefficient due to limited voltage step-up ratio which may not be applicable for high step-up applications as in the case of micro generators. The proposed IBS topology is based on the common part sharing method capable of operating both for positive and negative half cycle of the input signal. Result and simulation were conducted using PSIM environment. The proposed AC-DC IBS topology eliminates the requirement of bridge rectifier achieving high efficiency (about 99%), improved power factor (0.75, leading) and lower THD (about 38.8%) which is within IEEE standard.
文摘A design of the main AC/DC converter system for ITER is described and the configuration of the main AC/DC converters is presented. To reduce the reactive power absorbed from the converter units, the main AC/DC converters are designed to be series-connected and work in a sequential mode. The structure of the regulator of the converter system is described. A simulation model was built up for the PSCAD/EMTDC code, and the design was validated accordingly. Harmonic analysis and reactive power calculation of the converters units are presented. The results reveal the advantage of sequential control in reducing reactive power and harmonics.
文摘China is an important country in iron and steel industry.Power electronics converters are widely used.For the cold rolling mills of high speed,AC-DC-AC converters should be used.In the paper,the design and the control system of the large power three-level AC - DC - AC converter with IGCTs is investigated,and a back-to-back large power three-level AC - DC - AC converter with IGCTs has been got. With a series experiments,the performance of the converter is examined.The experiment result indicates the converter reaches the design requirement and it shows excellent performance.The converter system has been put into use safely.It is estimated that the AC - DC - AC converter system will be used in the drive systems for rolling mills in the near future.