The issue of destroying small polycyclic aromatic hydrocarbon (PAH) par- ticles by radiation from AGNs is examined through optical narrow-emission line ra- tios of a sample of type II AGNs. We find that narrow-line ...The issue of destroying small polycyclic aromatic hydrocarbon (PAH) par- ticles by radiation from AGNs is examined through optical narrow-emission line ra- tios of a sample of type II AGNs. We find that narrow-line ratios [OI]λ6300/Ha and [SII]λ6716, λ6731/Hα have prominent correlations with the PAH 11.3/7.7 ratio in our selected sample of AGNs. Because of the marginal (and in some cases no) dependence of the PAH ratio on the gas metallicity, a possible explanation for the correlations is the destruction of small PAH particles by the hard ionizing field associated with the AGNs.展开更多
We present a sample of 4388 AGNs with available radio core-dominance parameters—defined as the ratio of the core flux densities to the extended ones, R = S_(core)/S_(ext).—which includes 630 Fermi-detected AGNs from...We present a sample of 4388 AGNs with available radio core-dominance parameters—defined as the ratio of the core flux densities to the extended ones, R = S_(core)/S_(ext).—which includes 630 Fermi-detected AGNs from the fourth source catalog(4FGL) of the Fermi Large Area Telescope(Fermi/LAT);the rest are non-Fermi-detected AGNs. In our sample, 584 blazars are Fermi-detected and 1310 are not. The sample also contains other subclasses, such as Seyferts, Fanaroff-Riley I/II galaxies, and normal galaxies.We investigate various properties of the Fermi-detected and non-Fermi-detected AGNs by using core-dominance parameters,capitalizing on a previous study which showed that R is a good indicator of beaming. We then calculate radio spectral indices for the whole sample, and adopt γ-ray-photon indices for the Fermi AGNs from the 4FGL catalog to discuss the properties of different subclasses. We obtain a relation between the core-dominance parameters and the radio spectral indices for both Fermi and non-Fermi sources, assuming a two-component model in the radio band. Our previous study ruled out the assumption that the core-dominance parameters and radio spectral indices are quite different for different AGN subclasses. This holds not only for Fermi sources but also for non-Fermi sources. In particular, R is, on average, greater for the former AGNs than for the latter.In this study, we enlarge our sample with available values of R to 4388 AGNs, and the obtained conclusions are consistent with our previous study. We assume that the same two-component model holds for the γ-ray band as for the radio band, and therefore,adopt the same relation between the core-dominance parameters and the γ-ray-photon indices for Fermi AGNs. Our fitting results indicate that the γ-ray emissions of Fermi blazars originate mainly from the jet, and therefore, we conclude that the Fermi blazars are beamed.展开更多
The present paper derives the modified expression of broad emission line profiles for the kinematic model of radiation pressure driving BLR gas outflow in the BLR, and discusses the intrinsic emission difference betwe...The present paper derives the modified expression of broad emission line profiles for the kinematic model of radiation pressure driving BLR gas outflow in the BLR, and discusses the intrinsic emission difference between the two lines HeIλ5876 and Hβ. It is shown that the fact that the observed line width of HeIλ5876 is broader than that of Hβ cannot be explained by W. G. Mathews’ modified model. For comparison, line profiles of gravitational infall model and orbital disk model are also calculated; the latter is in good agreement with the observations. Thereupon, conclusion is reached that gravitational infall is an important process in the BLR gas motion.展开更多
We re-examine the ten Reverberation Mapping(RM) sources with public data based on the two-component model of the Broad Line Region(BLR).In fitting their broad Hβ Mlines,six of them only need one Gaussian component,on...We re-examine the ten Reverberation Mapping(RM) sources with public data based on the two-component model of the Broad Line Region(BLR).In fitting their broad Hβ Mlines,six of them only need one Gaussian component,one of them has a double-peak profile,one has an irregular profile,and only two of them need two components,i.e.,a Very Broad Gaussian Component(VBGC) and an Inter-Mediate Gaussian Component(IMGC).The Gaussian components are assumed to come from two distinct regions in the two-component model;they are the Very Broad Line Region(VBLR) and the Inter-Mediate Line region(IMLR).The two sources with a two-component profile are Mrk 509 and NGC 4051.The time lags of the two components of both sources satisfy tIMLR/tVBLR=V 2VBLR/V 2IMLR,where tIMLR and tVBLR are the lags of the two components while VIMLR and VVBLR represent the mean gas velocities of the two regions,supporting the two-component model of the BLR of Active Galactic Nuclei(AGNs).The fact that most of these ten sources only have the VBGC confirms the assumption that RM mainly measures the radius of the VBLR;consequently,the radius obtained from the R-L relationship mainly represents the radius of VBLR.Moreover,NGC 4051,with a lag of about 5 days in the one component model,is an outlier on the R-L relationship as shown in Kaspi et al.(2005);however this problem disappears in our two-component model with lags of about 2 and 6 days for the VBGC and IMGC,respectively.展开更多
The ground-based EAS array is usually operated with a high duty cycle (〉 90%) and a large field of view (- 2sr), which can continuously monitor the sky. It is essential and irreplaceable to understand the gamma-r...The ground-based EAS array is usually operated with a high duty cycle (〉 90%) and a large field of view (- 2sr), which can continuously monitor the sky. It is essential and irreplaceable to understand the gamma-ray emission mechanism and intrinsic physics progress of the variable source AGN. The EAS arrays, AS-y experiment (since 1990) and ARGO-YBJ experiment (since 2007), have continuously monitored the northern sky at energies above 3 TeV and 0.3 TeV, respectively. They have made substantial contributions for long-term monitoring of Mrk 421 and Mrk 501. In this paper, we will review the results obtained by the EAS arrays. The next generation of EAS array, LHAASO project, will boost the sensitivity of current EAS array at least up to 30 times with a much wider energy range from 40 GeV to 1 PeV. Beside increasing the number of VHE gamma-ray sources, it will guide us look sight into the properties of jet, and throw light on the determining of the EBL, intergalactic magnetic fields, and the validity of the Lorentz Invariance.展开更多
Understanding the variation of lags with respect to the X-ray flux is important to explore the geometry of the inner region of the accretion disk in AGNs.We performed frequency-lag,energy–lag and spectral studies for...Understanding the variation of lags with respect to the X-ray flux is important to explore the geometry of the inner region of the accretion disk in AGNs.We performed frequency-lag,energy–lag and spectral studies for two sets of observations,in order to investigate the variations in lags with respect to X-ray flux in the AGN source Mrk 704 using the XMM-Newton observatory.We divided one of the light curves into two sections which were noticed to exhibit a flux variation.The frequency-lag spectra in different energy domains revealed that reverberation(soft)lags varied along with the flux.For the first time,we show that the blurred reflection model can consistently explain the soft excess observed in the X-ray spectra for this source.The fluxes of soft(i.e.,reflection)and hard components were noted to vary by~18%and~9%respectively,across the sections.The soft lag amplitude was found to be larger at the high flux state than the amplitude at the low flux state.Most importantly,we found that both frequency-lag and energy–lag spectra do not display significant variation between two observational data sets despite a flux variation of 43%.This phenomenon cannot be explained by the reflection model because the soft lag amplitudes must be larger in the high flux state.The probable scenario is that,in the low flux state,the obscuring cloud delays the reflected soft photons which increases the soft lag amplitude.展开更多
A well-known but erroneous notion of electron degeneracy pressure has misled Astrophysics for nearly a century now. Because of their electrostatic interactions, the electrons can never exchange their momentum with pos...A well-known but erroneous notion of electron degeneracy pressure has misled Astrophysics for nearly a century now. Because of their electrostatic interactions, the electrons can never exchange their momentum with positive ions through elastic collisions and hence can never provide the so-called electron degeneracy pressure in stellar cores to counter the effect of gravity. In situations of high core densities, when the mean separation distance between atoms or ions becomes less than the normal size of their parent atoms, their electrostatic repulsion will force them into a lattice gridlock, leading to a solid state. All degenerate stellar cores constitute a solid state and the radial and hoop stresses induced by self-gravitation are proportional to the square of radius (r<sup>2</sup>). As the size of a solid iron stellar core grows, its peripheral region will experience extreme compression and will get partially ionized due to the phenomenon of pressure ionization. All so-called Neutron Stars and Black Holes are in fact Ionized Solid Iron Stellar Bodies (ISISB). The presence of ions in the peripheral regions of the ISISB will be associated with the circulation of degenerate electrons around the surface, thereby producing strong magnetic fields. A positive excess of ionic charge in all ISISB becomes a source of Ionic Gravitation through the process of polarization of neutral atoms and molecules in stellar bodies. These ISISB are the primary constituents of AGN and are the source of all non-stellar radiation and Jets of ionized matter.展开更多
The energy bands,electronic structures of CuN3 and AgN3 crystallines were investigated by periodic ab initio method.The charge density projection shows that there are overlaps of isodensities between the terminal nitr...The energy bands,electronic structures of CuN3 and AgN3 crystallines were investigated by periodic ab initio method.The charge density projection shows that there are overlaps of isodensities between the terminal nitrogen and metallic ion,indicating that the metals and the azides are combined by covalent bonds.The crystal lattice energies are-781.05 and-840.83 kJ/mol for CuN3 and AgN3 respectively.These results approach the data obtained by Gray′s approximate method.The frontier crystal orbital mainly consists of the atomic orbital of azide′s terminal nitrogen.The energy gap for AgN3 is smaller than that of CuN3,and the highest occupied crystal orbitals of AgN-3 consist of both the atomic orbitals of the terminal nitrogen in azide and the silver ion,which facilitates the electron to leap from terminal nitrogen in azide to metallic ion directly.Hence silver azide is slightly more sensitive than copper azide.The elastic coefficients C11,C22 and C33 of CuN3 are predicted to be 96.52,96.86 and 154.06 GPa,C11 and C22 of AgN3 are 303.29 and 138.80 GPa.展开更多
基金Supported by the National Natural Science Foundation of China
文摘The issue of destroying small polycyclic aromatic hydrocarbon (PAH) par- ticles by radiation from AGNs is examined through optical narrow-emission line ra- tios of a sample of type II AGNs. We find that narrow-line ratios [OI]λ6300/Ha and [SII]λ6716, λ6731/Hα have prominent correlations with the PAH 11.3/7.7 ratio in our selected sample of AGNs. Because of the marginal (and in some cases no) dependence of the PAH ratio on the gas metallicity, a possible explanation for the correlations is the destruction of small PAH particles by the hard ionizing field associated with the AGNs.
基金supported by the National Natural Science Foundation of China(Grant Nos.11733001,and U1531245)the Natural Science Foundation of Guangdong Province(Grant No.2017A030313011)。
文摘We present a sample of 4388 AGNs with available radio core-dominance parameters—defined as the ratio of the core flux densities to the extended ones, R = S_(core)/S_(ext).—which includes 630 Fermi-detected AGNs from the fourth source catalog(4FGL) of the Fermi Large Area Telescope(Fermi/LAT);the rest are non-Fermi-detected AGNs. In our sample, 584 blazars are Fermi-detected and 1310 are not. The sample also contains other subclasses, such as Seyferts, Fanaroff-Riley I/II galaxies, and normal galaxies.We investigate various properties of the Fermi-detected and non-Fermi-detected AGNs by using core-dominance parameters,capitalizing on a previous study which showed that R is a good indicator of beaming. We then calculate radio spectral indices for the whole sample, and adopt γ-ray-photon indices for the Fermi AGNs from the 4FGL catalog to discuss the properties of different subclasses. We obtain a relation between the core-dominance parameters and the radio spectral indices for both Fermi and non-Fermi sources, assuming a two-component model in the radio band. Our previous study ruled out the assumption that the core-dominance parameters and radio spectral indices are quite different for different AGN subclasses. This holds not only for Fermi sources but also for non-Fermi sources. In particular, R is, on average, greater for the former AGNs than for the latter.In this study, we enlarge our sample with available values of R to 4388 AGNs, and the obtained conclusions are consistent with our previous study. We assume that the same two-component model holds for the γ-ray band as for the radio band, and therefore,adopt the same relation between the core-dominance parameters and the γ-ray-photon indices for Fermi AGNs. Our fitting results indicate that the γ-ray emissions of Fermi blazars originate mainly from the jet, and therefore, we conclude that the Fermi blazars are beamed.
基金Project supported by the National Natural Science Foundation of China
文摘The present paper derives the modified expression of broad emission line profiles for the kinematic model of radiation pressure driving BLR gas outflow in the BLR, and discusses the intrinsic emission difference between the two lines HeIλ5876 and Hβ. It is shown that the fact that the observed line width of HeIλ5876 is broader than that of Hβ cannot be explained by W. G. Mathews’ modified model. For comparison, line profiles of gravitational infall model and orbital disk model are also calculated; the latter is in good agreement with the observations. Thereupon, conclusion is reached that gravitational infall is an important process in the BLR gas motion.
基金support by the Directional Research Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-T03)the Na-tional Natural Science Foundation of China (Grant Nos. 10821061,10733010,10725313)the National Basic Research Program of China (Grant No. 2009CB824800)
文摘We re-examine the ten Reverberation Mapping(RM) sources with public data based on the two-component model of the Broad Line Region(BLR).In fitting their broad Hβ Mlines,six of them only need one Gaussian component,one of them has a double-peak profile,one has an irregular profile,and only two of them need two components,i.e.,a Very Broad Gaussian Component(VBGC) and an Inter-Mediate Gaussian Component(IMGC).The Gaussian components are assumed to come from two distinct regions in the two-component model;they are the Very Broad Line Region(VBLR) and the Inter-Mediate Line region(IMLR).The two sources with a two-component profile are Mrk 509 and NGC 4051.The time lags of the two components of both sources satisfy tIMLR/tVBLR=V 2VBLR/V 2IMLR,where tIMLR and tVBLR are the lags of the two components while VIMLR and VVBLR represent the mean gas velocities of the two regions,supporting the two-component model of the BLR of Active Galactic Nuclei(AGNs).The fact that most of these ten sources only have the VBGC confirms the assumption that RM mainly measures the radius of the VBLR;consequently,the radius obtained from the R-L relationship mainly represents the radius of VBLR.Moreover,NGC 4051,with a lag of about 5 days in the one component model,is an outlier on the R-L relationship as shown in Kaspi et al.(2005);however this problem disappears in our two-component model with lags of about 2 and 6 days for the VBGC and IMGC,respectively.
基金the National Natural Science Foundation of China (Grant No. 11205165)the Xiejialin Fund of the Institute of High Energy Physics, Chinese Academy of Sciences (Grant No. Y3546140U2)
文摘The ground-based EAS array is usually operated with a high duty cycle (〉 90%) and a large field of view (- 2sr), which can continuously monitor the sky. It is essential and irreplaceable to understand the gamma-ray emission mechanism and intrinsic physics progress of the variable source AGN. The EAS arrays, AS-y experiment (since 1990) and ARGO-YBJ experiment (since 2007), have continuously monitored the northern sky at energies above 3 TeV and 0.3 TeV, respectively. They have made substantial contributions for long-term monitoring of Mrk 421 and Mrk 501. In this paper, we will review the results obtained by the EAS arrays. The next generation of EAS array, LHAASO project, will boost the sensitivity of current EAS array at least up to 30 times with a much wider energy range from 40 GeV to 1 PeV. Beside increasing the number of VHE gamma-ray sources, it will guide us look sight into the properties of jet, and throw light on the determining of the EBL, intergalactic magnetic fields, and the validity of the Lorentz Invariance.
基金K.S.acknowledges the financial support from the Indian Space Research Organisation(ISRO),Government of India。
文摘Understanding the variation of lags with respect to the X-ray flux is important to explore the geometry of the inner region of the accretion disk in AGNs.We performed frequency-lag,energy–lag and spectral studies for two sets of observations,in order to investigate the variations in lags with respect to X-ray flux in the AGN source Mrk 704 using the XMM-Newton observatory.We divided one of the light curves into two sections which were noticed to exhibit a flux variation.The frequency-lag spectra in different energy domains revealed that reverberation(soft)lags varied along with the flux.For the first time,we show that the blurred reflection model can consistently explain the soft excess observed in the X-ray spectra for this source.The fluxes of soft(i.e.,reflection)and hard components were noted to vary by~18%and~9%respectively,across the sections.The soft lag amplitude was found to be larger at the high flux state than the amplitude at the low flux state.Most importantly,we found that both frequency-lag and energy–lag spectra do not display significant variation between two observational data sets despite a flux variation of 43%.This phenomenon cannot be explained by the reflection model because the soft lag amplitudes must be larger in the high flux state.The probable scenario is that,in the low flux state,the obscuring cloud delays the reflected soft photons which increases the soft lag amplitude.
文摘A well-known but erroneous notion of electron degeneracy pressure has misled Astrophysics for nearly a century now. Because of their electrostatic interactions, the electrons can never exchange their momentum with positive ions through elastic collisions and hence can never provide the so-called electron degeneracy pressure in stellar cores to counter the effect of gravity. In situations of high core densities, when the mean separation distance between atoms or ions becomes less than the normal size of their parent atoms, their electrostatic repulsion will force them into a lattice gridlock, leading to a solid state. All degenerate stellar cores constitute a solid state and the radial and hoop stresses induced by self-gravitation are proportional to the square of radius (r<sup>2</sup>). As the size of a solid iron stellar core grows, its peripheral region will experience extreme compression and will get partially ionized due to the phenomenon of pressure ionization. All so-called Neutron Stars and Black Holes are in fact Ionized Solid Iron Stellar Bodies (ISISB). The presence of ions in the peripheral regions of the ISISB will be associated with the circulation of degenerate electrons around the surface, thereby producing strong magnetic fields. A positive excess of ionic charge in all ISISB becomes a source of Ionic Gravitation through the process of polarization of neutral atoms and molecules in stellar bodies. These ISISB are the primary constituents of AGN and are the source of all non-stellar radiation and Jets of ionized matter.
文摘The energy bands,electronic structures of CuN3 and AgN3 crystallines were investigated by periodic ab initio method.The charge density projection shows that there are overlaps of isodensities between the terminal nitrogen and metallic ion,indicating that the metals and the azides are combined by covalent bonds.The crystal lattice energies are-781.05 and-840.83 kJ/mol for CuN3 and AgN3 respectively.These results approach the data obtained by Gray′s approximate method.The frontier crystal orbital mainly consists of the atomic orbital of azide′s terminal nitrogen.The energy gap for AgN3 is smaller than that of CuN3,and the highest occupied crystal orbitals of AgN-3 consist of both the atomic orbitals of the terminal nitrogen in azide and the silver ion,which facilitates the electron to leap from terminal nitrogen in azide to metallic ion directly.Hence silver azide is slightly more sensitive than copper azide.The elastic coefficients C11,C22 and C33 of CuN3 are predicted to be 96.52,96.86 and 154.06 GPa,C11 and C22 of AgN3 are 303.29 and 138.80 GPa.