OBJECTIVE Alzheimer disease(AD) is the most common type of senile dementia. The anti-aging gene Klotho is reported to decline in the brain of patients and animals with AD. However, the role of Klotho in the progressio...OBJECTIVE Alzheimer disease(AD) is the most common type of senile dementia. The anti-aging gene Klotho is reported to decline in the brain of patients and animals with AD. However, the role of Klotho in the progression of AD remains elusive. The present study explored the effects and underlying mechanism of Klotho in amyloid precursor protein/presenilin 1(APP/PS1) transgenic mice. METHODS The upregulation of cerebral Klotho expression was mediated by intracerebroventricular administration of a lentiviral vector that encoded Klotho(LV-KL) in APP/PS1 transgenicmice.RESULTS LV-KL significantly increased Klotho overexpression and effectively ameliorated cognitive deficits and AD-like pathology in aged AD mice. LV-KL might induce autophagy activation and protein kinase B/mammalian target of rapamycin inhibition in both AD mice and cultured BV2 murine microglia. Meanwhile, LV-KL altered the expression of low density lipoprotein receptor-related protein 1(LRP-1), receptor for advanced glycation end products, P-glycoprotein and ABCA1 both at the brain microvascular and choroid plexus as well as the contents of plasma s LRP-1 in aged AD mice.CONCLUSION The current results indicate that Klotho plays a crucial role in the clearance of cerebral amyloid β protein and the progression of AD in mice. These findings highlight the preventive and therapeutic potential of Klotho for the treatment of AD.展开更多
Disturbances in the microbiota-gut-brain axis may contribute to the development of Alzheimer's disease. Magnesium-L-threonate has recently been found to have protective effects on learning and memory in aged and A...Disturbances in the microbiota-gut-brain axis may contribute to the development of Alzheimer's disease. Magnesium-L-threonate has recently been found to have protective effects on learning and memory in aged and Alzheimer's disease model mice. However, the effects of magnesium-L-threonate on the gut microbiota in Alzheimer's disease remain unknown. Previously, we reported that magnesium-L-threonate treatment improved cognition and reduced oxidative stress and inflammation in a double-transgenic line of Alzheimer's disease model mice expressing the amyloid-β precursor protein and mutant human presenilin 1(APP/PS1). Here, we performed 16S r RNA amplicon sequencing and liquid chromatography-mass spectrometry to analyze changes in the microbiome and serum metabolome following magnesium-Lthreonate exposure in a similar mouse model. Magnesium-L-threonate modulated the abundance of three genera in the gut microbiota, decreasing Allobaculum and increasing Bifidobacterium and Turicibacter. We also found that differential metabolites in the magnesiumL-threonate-regulated serum were enriched in various pathways associated with neurodegenerative diseases. The western blotting detection on intestinal tight junction proteins(zona occludens 1, occludin, and claudin-5) showed that magnesium-L-threonate repaired the intestinal barrier dysfunction of APP/PS1 mice. These findings suggest that magnesium-L-threonate may reduce the clinical manifestations of Alzheimer's disease through the microbiota-gut-brain axis in model mice, providing an experimental basis for the clinical treatment of Alzheimer's disease.展开更多
Because of a lack of sensitive biomarkers,the diagnosis of Alzheimer's disease(AD) cannot be made prior to symptom manifestation.Therefore,it is crucial to identify novel biomarkers for the presymptomatic diagnosis...Because of a lack of sensitive biomarkers,the diagnosis of Alzheimer's disease(AD) cannot be made prior to symptom manifestation.Therefore,it is crucial to identify novel biomarkers for the presymptomatic diagnosis of AD.While brain lesions are a major feature of AD,retinal pathological changes also occur in patients.In this study,we investigated the temporal changes in β-site APP-cleaving enzyme 1(BACE1) expression in the retina and brain to determine whether it could serve as a suitable biomarker for early monitoring of AD.APP/PS-1 transgenic mice,3,6 and 8 months of age,were used as an experimental group,and age-matched C57/BL6 wild-type mice served as the control group.In the Morris water maze test,there were no significant differences in escape latency or in the number of crossings in the target area among mice of different ages.Compared with wild-type mice,no changes in learning or memory abilities were detected in transgenic mice at 3 months of age.However,compared with wild-type mice,the escape latency was significantly increased in transgenic mice at 6 months,starting on day 3,and at 8 months,starting on day 2,during Morris water maze training.In addition,the number of crossings of the target area was significantly decreased in transgenic mice.The learning and memory abilities of transgenic mice were further worsened at 8 months of age.Immunohistochemical staining revealed no BACE1 plaques in wild-type mice at 3,6 or 8 months or in transgenic mice at 3 months,but they were clearly found in the entorhinal cortex,hippocampus and prefrontal cortex of transgenic mice at 6 and 8 months.BACE1 expression was not detected in the retina of wild-type mice at 3 months,but weak BACE1 expression was detected in the ganglion cell layer,inner plexiform layer and outer plexiform layer at 6 and 8 months.In transgenic mice,BACE1 expression in the ganglion cell layer was increased at 3 months,and BACE1 expression in the ganglion cell layer,inner plexiform layer and outer plexiform layer was significantly increased at 6 and 8 months,compared with age-matched wild-type mice.Taken together,these results indicate that changes in BACE1 expression appear earlier in the retina than in the brain and precede behavioral deficits.Our findings suggest that abnormal expression of BACE1 in the retina is an early pathological change in APP/PS-1 transgenic mice,and that BACE1 might have potential as a biomarker for the early diagnosis of AD in humans.展开更多
【目的】肠道菌群通过"微生物-肠道-脑轴"影响中枢神经系统的功能,同时也与老年性痴呆的发生发展相关,特别是盲肠内微生物菌群的变化更为显著。肠道菌群可以产生和代谢甲醛,而肠道能够迅速吸收甲醛;体内甲醛含量与老年性痴呆...【目的】肠道菌群通过"微生物-肠道-脑轴"影响中枢神经系统的功能,同时也与老年性痴呆的发生发展相关,特别是盲肠内微生物菌群的变化更为显著。肠道菌群可以产生和代谢甲醛,而肠道能够迅速吸收甲醛;体内甲醛含量与老年性痴呆病人的认知损害程度呈正相关。因此,本文比较了7月龄APP/PS1转基因老年性痴呆模型小鼠(简称APP/PS1转基因小鼠)与同月龄C57BL/6J野生型小鼠(简称C57BL/6J小鼠)肠道菌群产生甲醛的情况。【方法】取APP/PS1转基因小鼠(n=8)与C57BL/6J小鼠(n=9)的不同肠段(十二指肠、小肠、盲肠、结肠),采用2,4-Dinitrophenylhydrazi zne(DNPH)显色偶联高效液相色谱(HPLC coupled with DNPH)测定肠道消化物和肠壁组织的甲醛。【结果】APP/PS1转基因小鼠盲肠消化物内的甲醛含量,较C57BL/6J小鼠存在显著升高(P=0.036);而两者小肠和结肠消化物甲醛含量无显著差别。在两种小鼠之间,小肠壁内甲醛存在差异(P=0.052),而盲肠和结肠壁甲醛含量无显著差异(P>0.05)。【结论】肠道菌群是小鼠体内甲醛的主要来源之一,无论肠道消化物,还是肠道壁组织均为盲肠的甲醛含量最高。这些结果表明,APP/PS1转基因小鼠肠道菌群存在甲醛代谢失调,从而导致其肠道消化物的甲醛含量升高。展开更多
文摘OBJECTIVE Alzheimer disease(AD) is the most common type of senile dementia. The anti-aging gene Klotho is reported to decline in the brain of patients and animals with AD. However, the role of Klotho in the progression of AD remains elusive. The present study explored the effects and underlying mechanism of Klotho in amyloid precursor protein/presenilin 1(APP/PS1) transgenic mice. METHODS The upregulation of cerebral Klotho expression was mediated by intracerebroventricular administration of a lentiviral vector that encoded Klotho(LV-KL) in APP/PS1 transgenicmice.RESULTS LV-KL significantly increased Klotho overexpression and effectively ameliorated cognitive deficits and AD-like pathology in aged AD mice. LV-KL might induce autophagy activation and protein kinase B/mammalian target of rapamycin inhibition in both AD mice and cultured BV2 murine microglia. Meanwhile, LV-KL altered the expression of low density lipoprotein receptor-related protein 1(LRP-1), receptor for advanced glycation end products, P-glycoprotein and ABCA1 both at the brain microvascular and choroid plexus as well as the contents of plasma s LRP-1 in aged AD mice.CONCLUSION The current results indicate that Klotho plays a crucial role in the clearance of cerebral amyloid β protein and the progression of AD in mice. These findings highlight the preventive and therapeutic potential of Klotho for the treatment of AD.
基金supported by the National Natural Science Foundation of China,Nos.82101271 (to WL),82171178 (to JL)Basic and Applied Basic Research Foundation of Guangdong Province,Nos.2020A1515110317 (to WL),2021A1515010705 (to WL)+1 种基金Young Talent Support Project of Guangzhou Association for Science and Technology (to WL)Technology Key Project of Shenzhen,No.JCYJ202001091 14612308 (to ZS)。
文摘Disturbances in the microbiota-gut-brain axis may contribute to the development of Alzheimer's disease. Magnesium-L-threonate has recently been found to have protective effects on learning and memory in aged and Alzheimer's disease model mice. However, the effects of magnesium-L-threonate on the gut microbiota in Alzheimer's disease remain unknown. Previously, we reported that magnesium-L-threonate treatment improved cognition and reduced oxidative stress and inflammation in a double-transgenic line of Alzheimer's disease model mice expressing the amyloid-β precursor protein and mutant human presenilin 1(APP/PS1). Here, we performed 16S r RNA amplicon sequencing and liquid chromatography-mass spectrometry to analyze changes in the microbiome and serum metabolome following magnesium-Lthreonate exposure in a similar mouse model. Magnesium-L-threonate modulated the abundance of three genera in the gut microbiota, decreasing Allobaculum and increasing Bifidobacterium and Turicibacter. We also found that differential metabolites in the magnesiumL-threonate-regulated serum were enriched in various pathways associated with neurodegenerative diseases. The western blotting detection on intestinal tight junction proteins(zona occludens 1, occludin, and claudin-5) showed that magnesium-L-threonate repaired the intestinal barrier dysfunction of APP/PS1 mice. These findings suggest that magnesium-L-threonate may reduce the clinical manifestations of Alzheimer's disease through the microbiota-gut-brain axis in model mice, providing an experimental basis for the clinical treatment of Alzheimer's disease.
基金supported by the National Natural Science Foundation of China(to JFH,DC,JBT),No.81371011,81400399,81471107a grant from the Project of Innovation-driven Plan of Central South University(to DC),No.2015CXS022+2 种基金a grant from the National Key Technologies Research and Development Program of China(to JFH),No.2012BAK14B03Fundamental Research Funds of Central South University of China(to HW),No.2010QZZD022Graduate Thesis Innovation Foundation of Central South University of China(to LL),No.2011ssxt106
文摘Because of a lack of sensitive biomarkers,the diagnosis of Alzheimer's disease(AD) cannot be made prior to symptom manifestation.Therefore,it is crucial to identify novel biomarkers for the presymptomatic diagnosis of AD.While brain lesions are a major feature of AD,retinal pathological changes also occur in patients.In this study,we investigated the temporal changes in β-site APP-cleaving enzyme 1(BACE1) expression in the retina and brain to determine whether it could serve as a suitable biomarker for early monitoring of AD.APP/PS-1 transgenic mice,3,6 and 8 months of age,were used as an experimental group,and age-matched C57/BL6 wild-type mice served as the control group.In the Morris water maze test,there were no significant differences in escape latency or in the number of crossings in the target area among mice of different ages.Compared with wild-type mice,no changes in learning or memory abilities were detected in transgenic mice at 3 months of age.However,compared with wild-type mice,the escape latency was significantly increased in transgenic mice at 6 months,starting on day 3,and at 8 months,starting on day 2,during Morris water maze training.In addition,the number of crossings of the target area was significantly decreased in transgenic mice.The learning and memory abilities of transgenic mice were further worsened at 8 months of age.Immunohistochemical staining revealed no BACE1 plaques in wild-type mice at 3,6 or 8 months or in transgenic mice at 3 months,but they were clearly found in the entorhinal cortex,hippocampus and prefrontal cortex of transgenic mice at 6 and 8 months.BACE1 expression was not detected in the retina of wild-type mice at 3 months,but weak BACE1 expression was detected in the ganglion cell layer,inner plexiform layer and outer plexiform layer at 6 and 8 months.In transgenic mice,BACE1 expression in the ganglion cell layer was increased at 3 months,and BACE1 expression in the ganglion cell layer,inner plexiform layer and outer plexiform layer was significantly increased at 6 and 8 months,compared with age-matched wild-type mice.Taken together,these results indicate that changes in BACE1 expression appear earlier in the retina than in the brain and precede behavioral deficits.Our findings suggest that abnormal expression of BACE1 in the retina is an early pathological change in APP/PS-1 transgenic mice,and that BACE1 might have potential as a biomarker for the early diagnosis of AD in humans.
文摘【目的】肠道菌群通过"微生物-肠道-脑轴"影响中枢神经系统的功能,同时也与老年性痴呆的发生发展相关,特别是盲肠内微生物菌群的变化更为显著。肠道菌群可以产生和代谢甲醛,而肠道能够迅速吸收甲醛;体内甲醛含量与老年性痴呆病人的认知损害程度呈正相关。因此,本文比较了7月龄APP/PS1转基因老年性痴呆模型小鼠(简称APP/PS1转基因小鼠)与同月龄C57BL/6J野生型小鼠(简称C57BL/6J小鼠)肠道菌群产生甲醛的情况。【方法】取APP/PS1转基因小鼠(n=8)与C57BL/6J小鼠(n=9)的不同肠段(十二指肠、小肠、盲肠、结肠),采用2,4-Dinitrophenylhydrazi zne(DNPH)显色偶联高效液相色谱(HPLC coupled with DNPH)测定肠道消化物和肠壁组织的甲醛。【结果】APP/PS1转基因小鼠盲肠消化物内的甲醛含量,较C57BL/6J小鼠存在显著升高(P=0.036);而两者小肠和结肠消化物甲醛含量无显著差别。在两种小鼠之间,小肠壁内甲醛存在差异(P=0.052),而盲肠和结肠壁甲醛含量无显著差异(P>0.05)。【结论】肠道菌群是小鼠体内甲醛的主要来源之一,无论肠道消化物,还是肠道壁组织均为盲肠的甲醛含量最高。这些结果表明,APP/PS1转基因小鼠肠道菌群存在甲醛代谢失调,从而导致其肠道消化物的甲醛含量升高。