Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years...Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years effort, and a characteristic theorem is given for Banach spaces which are (weak) Asplund spaces.展开更多
In this paper, we show that if an Asplund space X is either a Banach lattice or a quotient space of C(K), then it can be equivalently renormed so that the set of norm- attaining functionals contains an infinite dime...In this paper, we show that if an Asplund space X is either a Banach lattice or a quotient space of C(K), then it can be equivalently renormed so that the set of norm- attaining functionals contains an infinite dimensional closed subspace of X* if and only if X* contains an infinite dimensional reflexive subspace, which gives a partial answer to a question of Bandyopadhyay and Godefroy.展开更多
In this paper, we study the extension of isometries between the unit spheresof some Banach spaces E and the spaces C(Ω). We obtain that if the set sm.S_1(E) of all smoothpoints of the unit sphere S_1(E) is dense in S...In this paper, we study the extension of isometries between the unit spheresof some Banach spaces E and the spaces C(Ω). We obtain that if the set sm.S_1(E) of all smoothpoints of the unit sphere S_1(E) is dense in S_1(E), then under some condition, every surjectiveisometry V_0 from S_1(E) onto S_1(C(Ω)) can be extended to be a real linearly isometric map V of Eonto C(Ω). From this result we also obtain some corollaries. This is the first time we study thisproblem on different typical spaces, and the method of proof is also very different too.展开更多
文摘Characterizations of differentiability are obtained for continuous convex functions defined on nonempty open convex sets of Banach spaces as a generalization and application of a mumber of mathematicians several years effort, and a characteristic theorem is given for Banach spaces which are (weak) Asplund spaces.
基金partially supported by NSFC,grant 11371296PhD Programs Foundation of MEC,Grant 20130121110032
文摘In this paper, we show that if an Asplund space X is either a Banach lattice or a quotient space of C(K), then it can be equivalently renormed so that the set of norm- attaining functionals contains an infinite dimensional closed subspace of X* if and only if X* contains an infinite dimensional reflexive subspace, which gives a partial answer to a question of Bandyopadhyay and Godefroy.
文摘In this paper, we study the extension of isometries between the unit spheresof some Banach spaces E and the spaces C(Ω). We obtain that if the set sm.S_1(E) of all smoothpoints of the unit sphere S_1(E) is dense in S_1(E), then under some condition, every surjectiveisometry V_0 from S_1(E) onto S_1(C(Ω)) can be extended to be a real linearly isometric map V of Eonto C(Ω). From this result we also obtain some corollaries. This is the first time we study thisproblem on different typical spaces, and the method of proof is also very different too.